研究生: |
藍浚愷 Lan, Chun-Kai |
---|---|
論文名稱: |
以表面改質和奈米複合材料提升高功率型鈦酸鋰鋰離子負極材料 Improving Cycling Performance of Spinel Lithium Titanate Anode Materials by Surface Modification and Composite Material for High Power Lithium-ion Batteries |
指導教授: |
杜正恭
Duh, Jenq-Gong |
口試委員: |
陳金銘
廖世傑 胡龍豪 林志遠 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 235 |
中文關鍵詞: | 鈦酸鋰 、鋰電池 、大氣電漿 、奈米複合材 |
外文關鍵詞: | Lithium titanate, Li-ion batteries, Atmospheric pressure plasma, nanocomposite |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了解決排放二氧化碳造成之環境議題以及提升整體儲能系統使用效率,鋰離子二次電池被廣泛應用在油電混合車和大型儲能系統,進而減少廢氣排放以及能源使用效率。因此高功率與高能量的電池需求大增佳,也促使專家學者積極開發新型負極材料。本研究將表面改質與複合材料的概念引入負極材料之開發中,期望能藉由材料的最佳化來改善整體鋰電池的電化學表現。
鈦酸鋰負極材料具備高工作電壓之特性,可避免樹枝狀鋰金屬的生成,避免隔離膜被刺穿引起的爆炸危險。另外其高度結構穩定性,在鋰離子遷入遷出的過程中,體積也無劇烈之變化,因此被認為是下世代動力電池之首選。惟鈦酸鋰陶瓷材料本身導電子與導鋰離子能力不佳,嚴重阻礙其商業化之可行性。由文獻上指出,參雜氮離子到鈦酸鋰粉末會製造出氧空缺,使部分鈦四正離子轉換成鈦三正離子,進而有效的提升整體導電性。因此,本論文第一部分利用本實驗室所開發之大氣電漿裝置直接對鈦酸鋰極片做表面處理,藉由功率與時間的調控,成功地將氮離子參雜到鈦酸鋰極片表面。此電漿處理過後之極片在10 C的充放電速率下,即使到100圈仍然保有132mAh g-1 的表現,表示其快速充放電能力在電將處理後受到顯著改良。由近期內的報導指出,鈦酸鋰負極材料在一伏以上進行充放電,鈦酸鋰表面會和電解液起反應生成不可逆的SEI薄膜,進而影響其高充放電表現。因此,在第二部分研究中,將利用濺鍍的方式在鈦酸鋰極片表面直接鍍覆一層保護碳膜,避免電解液的直接接觸。此外,在這部分中利用大氣電漿處理裝置加工便利,用來對鍍完碳膜的極片進行處理,來調控碳膜的性質。由結果指出,表面有鍍覆碳膜的極片在經過電漿處理過後,即使在10C的充放電速率下充放電300圈仍然可以維持91% retention。並且由掃描式電子顯微鏡跟XPS depth profile分析,可以觀察到有鍍覆碳膜的樣品表面SEI膜的厚度明顯減少,表示碳膜的引入可以有效地抑制極片與電解液之間的不可逆反應。而在第三個部分,我們藉由前面的結果可以知道,氧缺的產生有利於鈦酸鋰在高出放電速率下的循環穩定性。另外,利用表面碳批覆所製造出來的連續導電網路不僅可以提供更好的導電性也可以抑制SEI薄膜的生成。因此綜合之前的結果,最後一部分將在還原氣氛下合成出奈米鈦酸鋰並利用無毒且便宜的高分子當作多孔性碳基材的前驅物,奈米鈦酸鋰粉末鑲嵌在碳基材裡面避免電解液的直接接觸,並提供連續型的導電網路來大幅提升其在快速充分電的能力。而由結果顯示,其在50C的充放電速率下,展現出極為優異的充放電穩定性,在兩百圈的充放電後仍可以維持92 mAh g-1。並且此鈦酸鋰與多孔隙的碳基複合材也被應用到鈉電池上,一樣獲得十分優異的電化學性能。因此此鈦酸鋰與多孔隙的碳基複合材在鋰電池與鈉電池同時展現出優異的快速充放電能力以及循環穩定性,堪稱下世代高功率電池的希望!
To solve the environmental concern for global issue and to enhance the efficiency of energy storage system, lithium-ion batteries have been used for large-scale energy storage system and hybrid electric vehicle (HEV) to save oil and to decrease exhaust emissions. Therefore, the increasing demands for high energy density and high power density of batteries have attracted investigators to develop new materials for lithium-ion batteries. In this study, the concept of surface modification and composite are introduced to explore advanced negative materials.
Spinel Li4Ti5O12 is a promising anode material, due to its stable working voltage and negligible structure change during charge-dscharge process. Nevertheless, the relatively low electronic conductivity will limit the commercialization of spinel Li4Ti5O12. Hereafter, improving electronic conductivity via ion doping approach to promote the rate capability of spinel Li4Ti5O12 anodes is investigated in the first section. Lithium titanate was successfully doped by N3- ions into O2- sites through Ar/N2 plasma irradiation at atmospheric pressure. The electrochemical behavior of plasma-treated lithium titanate will be systematically investigated; it also exhibits a desirable discharge capacity of 132 mAh g-1 with almost 100% capacity retention after 100 cycling life at a high rate of 10C. Afterwards, to suppress irreversible reaction and to greatly accelerate their rate capability, carbon passivation layer is introduced via sputtering process. The carbon overlayer-coated lithium titanate shows desirable rate capability. The reversible capacity at 10 C even remains over 91 % of that at initial cycles. Besides, the carbon passivation layer successfully alleviates the irreversible interfacial reaction between active material and electrolyte. In the last section, the Li4Ti5O12/porous carbon matrices was synthesized under reducing atmosphere, the aim of which was to realize the excellent chemical performance of Li4Ti5O12-based anodes, based on the concept of designing continuous conductive network and inducing oxygen vacancies. Li4Ti5O12/porous carbon matrices can retain both remarkable rate capability and superior cycling stability. The c-CMC-LTO exhibits a superior capacity of 92 mAh g-1 and retains its initial value with no obviously capacity decay over 200 cycles under an ultra-high C rate (50 C). Furthermore, for sodium ion batteries, the c-CMC-LTO also showed an excellent cycling stability with a discharge capacity of 127.6 mA g-1 even after 100 cycles at 1C. In summary, the c-CMC-LTO is expected to be a promising anode material for integrating both ultrahigh rate and extremely stable cycling performance for next-generation Li-ion batteries and Na-ion batteries.
1. B. Dunn, H. Kamath, J.M. Tarascon, “Electrical energy storage for the grid: a battery of choices, Science, 334 (2011) 928- 935.
2. V. R. Subramanian, P. Yu, B.N. Popov, R.E. White, “Modeling Lithium Diffusion in Nickel Composite Graphite, J. Power Sources, 96(2001) 396- 405.
3. T. Ohzuku, A. Ueda, N. Yamamota, “Zero‐Strain Insertion Material of Li4Ti5O12 for Rechargeable Lithium Cells, J. Electrochem. Soc., 142 (1995) 1431- 1435.
4. J. Wolfenstine, J.L. Allen, “Electrical conductivity and charge compensation in Ta doped Li4Ti5O12,” J. Power Sources, 180 (2008) 582- 585.
5. H. Ni, L.Z. Fan, “Nano-Li4Ti5O12 anchored on carbon nanotubes by liquid phase deposition as anode material for high rate lithium-ion batteries,” J. Power Sources, 214 (2012) 195-199.
6. H. Ni, W.L. Song, L.Z. Fan, “A strategy for scalable synthesis of Li4Ti5O12/reduced graphene oxide toward high rate lithium-ion batteries,” Electrochem. Commun., 40 (2014) 1–4.
7. L. Cheng, X.L. Li, H.J. Liu, H.M. Xiong, P.W. Zhang, Y.Y. Xia, ” Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation,” J. Electrochem. Soc., 154 (2007) A692- A697.
8. Z. Jian, L. Zhao, R. Wang, Y. S. Hu, H. Li, W. Chen and L. Chen, ” The low-temperature (400oC) coating of few-layer graphene on porous Li4Ti5O12 via C28H16Br2 pyrolysis for lithium-ion batteries,” RSC Adv.s, 2 (2012) 1751–1754.
9. J. Shu, Lu Hou, R. Ma, M. Shui, L. Shao, D. Wang, Y. Ren and W. Zheng, “In situ fabrication of Li4Ti5O12@CNT composites and their superior lithium storage properties,” RSC Adv., 2 (2012) 10306–10309.
10. Y, J.G. Duh, M.H. Hung, “Shell-by-Shell Synthesis and Applications of Carbon-Coated SnO2 Hollow Nanospheres in Lithium-Ion Battery,” J. Phys. Chem. C, 114 (2010) 13136- 13141.
11. Y.S. Lin, J.G. Duh, H.S. Sheu, “The phase transformation and cycling performance of copper-tin alloy anode materials synthesized by sputtering,” J. Alloys Compd., 509 (2011) 123- 127.
12. C. Jiang, M. Ichihara, I. Honma, H. Zhou, “Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode” Electrochim. Acta, 52 (2007) 6470- 6475.
13. Y.F. Tang, L. Yang, Z. Qiu, J.S. Huang, “Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets,” Electrochem.Commun., 10 (2008) 1513- 1516.
14. P. Martı´n, M.L. Lo´pez, C. Pico, M.L. Veiga, “Li(4−x)/3Ti(5−2x)/3CrxO4 (0 ≤ x ≤ 0.9) spinels: New negatives for lithium batteries,” Solid State Sci., 9 ( 2007) 521- 526.
15. Z. Wang, G. Chen, J. Xu, Z. Lv, W. Yang, “Synthesis and electrochemical performances of Li4Ti4.95Al0.05O12/C as anode material for lithium-ion batteries,” J. Phys. Chem. Solids, 72 (2011) 773- 778.
16. T.F. Yi, J. Shu, Y.R. Zhu, X.D. Zhu, R.S. Zhu, A.N. Zhou, “Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0 V,” J. Power Sources, 195 (2010) 285- 288.
17. T.F. Yi, Y. Xie, Q.J. Wu, H.P. Liu, L.J. Jiang, M.F. Ye, R.S. Zhu, “High rate cycling performance of lanthanum-modified Li4Ti5O12anode materials for lithium-ion batterie,s” J. Power Sources, 214 (2012) 220-226.
18. B. Tian, H. Xiang , L. Zhang, Z. Li, H. Wang, “Niobium doped lithium titanate as a high rate anode material for Li-ion batteries,” Electrochim. Acta, 55 (2010) 5453- 5458.
19. Y.R. Jhan, J.G. Duh, “Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density,” Electrochim. Acta, 63 (2012) 9- 15.
20. H. Shiiba, M. Nakayama, M. Nogami, “Ionic conductivity of lithium in spinel-type Li4/3Ti5/3O4–LiMg1/2Ti3/2O4 solid-solution system,” Solid State Ionics, 181(2010) 994- 1001.
21. B. Zhang, Z.D. Huang, S.W. Oh, J. K. Kim, “Improved rate capability of carbon coated Li3.9Sn0.1Ti5O12 porous electrodes for Li-ion batteries,” J. Power Sources, 196 (2011) 10692- 10697.
22. Y.H. Choi, J.H. Kim, K.H. Paek, W.T. Ju, Y.S. Hwang, “Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification,” Surf. Coat. Technol. 193 (2005) 319– 324
23. J. A. Nichols, H. Saito, C. Deck, and P. R. Bandaru, “Artificial introduction of defects into vertically aligned multiwalled carbon nanotube ensembles: Application to electrochemical sensors,” J. Appl. Phys., 102 (2007) 064306.
24. Y.B. He, B. Li, M. Liu, C. Zhang, W. Lv, C. Yang, J. Li, H. Du, B. Zhang, Q.H. Yang, J.K. Kim and F. Kang, “Gassing in Li4Ti5O12-Based Batteries and its Remedy,” Sci. Rep., 2 (2012) 913-921.
25. J.S. Park, A. U. Mane, J.W. Elam and J.R. Croy, “Amorphous Metal Fluoride Passivation Coatings Prepared by Atomic Layer Deposition on LiCoO2 for Li-Ion Batteries,” Chem. Mater. 27(2015) 1917−1920.
26. N. Yesibolati, M. Shahid, Wei. Chen, M. N. Hedhili, M. C. Reuter, F. M. Ross and H. N. Alshareef, “SnO2 Anode Surface Passivation by Atomic Layer Deposited HfO2 Improves Li-Ion Battery Performance,” Small 10 (2014) 2849–2858.
27. T.F. Yi, Y. Xie, Y.R. Zhu, R.S. Zhu, H. Shen, “Structural and thermodynamic stability of Li4Ti5O12 anode material for lithium-ion battery,” J. Power Sources 222 (2013) 448-454.
28. T.F. Yi, S.Y. Yang, Y. Xie, “Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries,” J. Mater. Chem. A 3 (2015) 5750-5777.
29. L. Yu, H. B. Wu, X. W. Lou, “Mesoporous Li4Ti5O12 Hollow Spheres with Enhanced Lithium Storage Capability,” Adv. Mater. 25 (2013) 2296-2300.
30. X. Lu, L. Zhao, X. Q. He, R. J. Xiao, L. Gu, Y. S. Hu, H. Li, Z. X. Wang, X. F. Duan, L.Q. Chen, J. Maier, Y. Ikuhara, “Lithium Storage in Li4Ti5O12 Spinel: The Full Static Picture from Electron Microscopy,”Adv. Mater. 24 (2012) 3233-3238.
31. S. Ganapathy, M. Wagemaker, “Nanosize Storage Properties in Spinel Li4Ti5O12 Explained by Anisotropic Surface Lithium Insertion,” ACS Nano 6 (2012) 8702-8712.
32. E. Ferg, R.-J. Gummow, A. Dekock, M.-M. Thackeray, “Spinel Anodes for Lithium‐Ion Batteries,” J. Electrochem. Soc. 141 (1994) L147-L150.
33. M.S.K. Zaghib, M. Armand, M. Gauthier, “Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries,” J. Power Sources 81-82 (1999) 300-305.
34. E. Kang, Y. S. Jung, G.-H. Kim, J. Chun, U. Wiesner, A. C. Dillon, J. K. Kim, J. Lee, “Highly Improved Rate Capability for a Lithium-Ion Battery Nano-Li4Ti5O12 Negative Electrode via Carbon-Coated Mesoporous Uniform Pores with a Simple Self-Assembly Method,” Adv. Funct. Mater. 21 (2011) 4349-4357.
35. J. Guo, W. Zuo, Y. Cai, S. Chen, S. Zhang, J. Liu, “A novel Li4Ti5O12-based high-performance lithium ion electrode at elevated temperature,” J. Mater. Chem. A 3 (2015) 4938-4944.
36. Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, “Direct atomic-scale confirmation of three-phase storage mechanism in Li₄Ti₅O₁₂ anodes for room-temperature sodium-ion batteries,” Nat Commun 4 (2013) 1870-9.
37. A. Volta, “On the electricity excited by the mere contact of conducting substances of different kinds,” Philosophical Transactions, (1800) 403-431.
38. Y. Matsuda, and Z. Takehara (Eds.), Denchi Binran (Battery handbook), 3rd Ed., Maruzen, Tokyo (2001) 145-146.
39. N.A. Kaskhedikar, and J. Maier, “Lithium Storage in Carbon Nanostructures” Adv. Mater., 21 (2009) 2664-2680.
40. Z. Ying, Q. Wan, H. Cao, Z. T. Song, and S. L. Feng, “Characterization of SnO2 nanowires as an anode material for Li-ion batteries,” Appl. Phys. Lett., 87 (2005) 113108-113110.
41. L.Y. Beaulieu, K.W. Eberman, R.L. Turner, L.J. Krause, and J.R. Dahn, “Colossal Reversible Volume Changes in Lithium Alloys,” Electrochem. Solid-State Lett., 4 (2001) A137-A140.
42. W.-J. Cui, F. Li, H.-J. Liu, C.-X. Wang, and Y.-Y. Xia, “Core–shell carbon-coated Cu6Sn5 prepared by in situ polymerization as a high-performance anode material for lithium-ion batteries,” J. Mater. Chem., 19 (2009) 7202-7207.
43. Y. Yu, C.-H. Chen, and Y. Shi, “A Tin-Based Amorphous Oxide Composite with a Porous, Spherical, Multideck-Cage Morphology as a Highly Reversible Anode Material for Lithium-Ion Batteries,” Adv. Mater., 19 (2007) 993-997.
44. G. Derrien, J. Hassoun, S. Panero, and B. Scrosati, “Nanostructured Sn–C Composite as an Advanced Anode Material in High-Performance Lithium-Ion Batteries,” Adv. Mater., 19 (2007) 2336-2340.
45. A.S. Prakash, P. Manikandan, K. Ramesha, M. Sathiya, J.-M. Tarascon, and A.K. Shukla, “Solution-Combustion Synthesized Nanocrystalline Li4Ti5O12 As High-Rate Performance Li-Ion Battery Anode”, Chem. Mater., 22 (2010) 2857-2863.
46. Sony Corporation, “US 18650G3,” Sony Data Sheets for Lithium Ion Battery, (2000) 14-15.
47. J. Hajek, French Patent, 8 (1949) 10.
48. M. S. Whittingham, Science, “Electrical energy storage and intercalation chemistry,”192 (1976) 1126-1128.
49. A. A. Schneider, U. S. Patent No. 4,010,043 (1972).
50. K. A. Klinedinst, U. S. Patent No. 4,176,214 (1979).
51. M. S. Whittingham, U. S. Patent No. 4,049,887 (1977).
52. M. Inaba, and Z. Ogumi, “Up-to-date development of lithium-ion batteries in Japan,” IEEE Electrical Insulation Magazine, 17 (2001) 6-20.
53. H. Ikeda and K. Terada, “Present status and prospects of lithium ion batteries: part I,” Valqua Review, 42 (1998) 1-7.
54. M. Inaba, Z. Siroma, Y. Kawatate, A. Funabiki and Z. Ogumi, “Electrochemical scanning tunneling microscopy analysis of the surface reactions on graphite basal plane in ethylene carbonate-based solvents and propylene carbonate,” J. Power Sources, 68 (1997) 221-226.
55. Y. Matsuda and Z. Takehara (Eds.), “Denchi Binran (Battery Handbook),” 3rd Ed., Maruzen, Tokyo, (2001) 278.
56. M. Lazzari and B. Scrosati, “A cyclable lithium organic electrolyte cell based on two intercalation electrodes,” J. Electrochem. Soc., 127 (1980) 773-774.
57. B. Di Pietro, M. Patriarca and B. Scrosati, “On the use of rocking chair configurations for cyclable lithium organic electrolyte batteries,” J. Power Sources, 8 (1982) 289-299.
58. J.L. Tirado, “Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects,” Mater. Sci. Eng. R, 40 (2003) 103-136.
59. T. Ohzuku, Y. Iwakoshi and K. Sawai, “Formation of lithium-graphite intercalation compounds in nonaqueous electrolytes and their application as a negative electrode for a lithium ion (shuttlecock) cell,” J. Electrochem. Soc., 140 (1993) 2490-2498.
60. L.J. Fu, K. Endo, K. Sekine, T. Takamura, Y.P. Wu and H.Q. Wu, “Studies on capacity fading mechanism of graphite anode for Li-ion battery,” J. Power Sources, 162 (2006) 663-666.
61. H. Zheng, K. Jiang, T. Abe and Z. Ogumi, “Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes,” Carbon, 44 (2006) 203-210.
62. H. Zhao, J. Ren, X. He, J. Li, C. Jiang and C. Wan, “Purification and carbon-film-coating of natural graphite as anode materials for Li-ion batteries,” Electrochim. Acta, 52 (2007) 6006-6011.
63. R.A. Huggins, “Lithium alloy negative electrodes,” J. Power Sources, 81-82 (1999) 13-19.
64. M. Inaba, Y. Kawatate, A. Funabiki, S.-K. Jeong, T. Abe and Z. Ogumi, “STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution,” Electrochem. Acta, 45 (1999) 99-105.
65. T. Ohzuku, A. Ueda, and N. Yamamoto, “Zero-Strain Insertion Material of Li4Ti5O12 for Rechargeable Lithium Cells,” J. Electrochem. Soc., 142 (1995) 1431-1435.
66. H. Ge, N. Li, D. Li, C. Dai, and D. Wang, “Study on the Theoretical Capacity of Spinel Lithium Titanate Induced by Low-Potential Intercalation,” J. Phys. Chem. C, 113 (2009) 6324-6326.
67. C.T. Hsieh, and J.Y. Lin, “Influence of Li addition on charge-discharge behavior of spinel lithium titanate,” J. Alloys Compd., 506 (2010) 231-236.
68. J.Jun, and Y.Y. Xia, “Co-Sn alloys as negative electrode materials for rechargeable lithium batteries,” J. Electrochem. Soc., 153 (2006) A1466–A1471.
69. K. Ariyoshi, R. Yamato, and T. Ohzuku, “Zero-strain insertion mechanism of Li[Li1/3Ti5/3]O4 for advanced lithium-ion (shuttlecock) batteries,” Electrochim. Acta, 51 (2005) 1125-1129.
70. J.B. Goodenough, and Y. Kim, “Challenges for Rechargeable Li Batteries”, Chem. Mater., 22 (2010) 587-603.
71. I. Belharouak, G.M. Koenig Jr., and K. Amine, “Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications”, J. Power Sources, 196 (2011) 10344-10350.
72. S.K. Martha, O. Haik, V. Borgel, E. Zinigrad, I. Exnar, T. Drezen, J.H. Miners, and D. Aurbach, “Li4Ti5O12/LiMnPO4 Lithium-Ion Battery Systems for Load Leveling Application”, J. Electrochem. Soc., 158 (2011) A790-A797.
73. T.F. Yi, L.J. Jiang, J. Shu, C.B. Yue, R.S. Zhu, and H.B. Qiao, “Recent development and application of Li4Ti5O12 as anode material of lithium ion battery”, J. Phys. Chem. Solids, 71 (2010) 1236-1242.
74. H. Ge, N. Li, D. Li, C. Dai, and D. Wang, “Study on the effect of Li doping in spinel Li4+xTi5-xO12 (0 ≤ x ≤ 0.2) materials for lithium-ion batteries”, Electrochem. Commun., 10 (2008) 1031-1034.
75. C.H. Chen, J.T. Vaughey, A.N. Jansen, D.W. Dees, A.J. Kahaian, T. Goacher, and M.M. Thackeray, “Studies of Mg-Substituted Li4-xMgxTi5O12 Spinel Electrodes (0 ≤ x ≤ 1) for Lithium Batteries”, J. Electrochem. Soc., 148 (2001) A102-A104.
76. J. Kim, S.-W. Kim, H. Gwon, W.-S. Yoon, and K. Kang, “Comparative study of Li(Li1/3Ti5/3)O4 and Li(Ni1/2−xLi2x/3Tix/3)Ti3/2O4 (x = 1/3) anodes for Li rechargeable batteries”, Electrochim. Acta, 54 (2009) 5914-5918.
77. P. Martin, M.L. Lopez, C. Pico, and M.L. Veiga, “Li(4-x)/3Ti(5-2x)/3CrxO4 (0 ≤ x ≤ 0.9) spinels: New negatives for lithium batteries”, Solid State Sci., 9 (2007) 521-526.
78. D.G. Kellerman, V.S. Gorshkov, E.V. Shalaeva, B.A. Tsaryev, and E.G. Vovkotrub, “Structure peculiarities of carbon-coated lithium titanate: Raman spectroscopy and electron microscopic study”, Solid State Sci., 14 (2012) 72-79.
79. B. Tian, H. Xiang, L. Zhang, and H. Wang, “Effect of Nb-doping on electrochemical stability of Li4Ti5O12 discharged to 0 V”, J. Solid State Electrochem., 16 (2012) 205-211.
80. S. Huang, Z. Wen, X. Zhu, and Z. Lin, “Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries”, J. Power Sources, 165 (2007) 408-412.
81. Y.J. Hao, Q.Y. Lai, J.Z. Lu, and X.Y. Ji, “Effects of dopant on the electrochemical properties of Li4Ti5O12 anode materials”, Ionics, 13 (2007) 369-373.
82. J. Wolfenstine, and J.L. Allen, “Electrical conductivity and charge compensation in Ta doped Li4Ti5O12”, J. Power Sources, 180 (2008) 582-585.
83. Z. Yu, X. Zhang, G. Yang, J. Liu, J. Wang, R. Wang, and J. Zhang, “High rate capability and long-term cyclability of Li4Ti4.9V0.1O12 as anode material in lithium ion battery”, Electrochim. Acta, 56 (2011) 8611-8617.
84. T.-F. Yi, Y. Xie, J. Shu, Z. Wang, C.B. Yue, R.S. Zhu, and H.B. Qiao, “Structure and Electrochemical Performance of Niobium-Substituted Spinel Lithium Titanium Oxide Synthesized by Solid-State Method”, J. Electrochem. Soc., 158 (2011) A266-A274.
85. M. Ganesan, “Li4Ti2.5Cr2.5O12 as anode material for lithium battery”, Ionics, 14 (2008) 395-401.
86. A.D. Robertson, L. Trevino, H. Tukamoto, and J.T.S. Irvine, “New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries”, J. Power Sources, 81–82 (1999) 352-357.
87. Y.R. Jhan, C.Y. Lin, J.G. Duh, “Preparation and characterization of Ruthenium doped Li4Ti5O12 anode material for the enhancement of rate capability and cyclic stability”, Mater. Lett., 65 (2011) 2502-2505.
88. G.-R. Hu, X.-L. Zhang, and Z.-D. Peng, “Preparation and electrochemical performance of tantalum-doped lithium titanate as anode material for lithium-ion battery”, Trans. Nonferrous Met. Soc. China, 21 (2011) 2248-2253.
89. X. Li, M. Qu, and Z. Yu, “Structural and electrochemical performances of Li4Ti5−xZrxO12 as anode material for lithium-ion batteries”, J. Alloys Compd., 487 (2009) L12-L17.
90. J. Gao, C. Jiang, and C. Wan, “Synthesis and Characterization of Spherical La-Doped Nanocrystalline Li4Ti5O12/C Compound for Lithium-Ion Batteries”, J. Electrochem. Soc., 157 (2010) K39-K42.
91. Y.-K. Sun, D.-J. Jung, Y.S. Lee, and K.S. Nahm, “Synthesis and electrochemical characterization of spinel Li[Li(1−x)/3CrxTi(5−2x)/3]O4 anode materials”, J. Power Sources, 125 (2004) 242-245.
92. Z. Zhong, “Synthesis of Mo4+ Substituted Spinel Li4Ti5−xMoxO12”, Electrochem. Solid-State Lett., 10 (2007) A267-A269.
93. D. Liu, C. Ouyang, J. Shu, J. Jiang, Z. Wang, and L. Chen, “Theoretical study of cation doping effect on the electronic conductivity of Li4Ti5O12”, Phys. Stat. Sol. (b), 243 (2006) 1835-1841.
94. S. Huang, Z. Wen, Z. Gu, and X. Zhu, “Preparation and cycling performance of Al3+ and F− co-substituted compounds Li4AlxTi5−xFyO12−y”, Electrochim. Acta, 50 (2005) 4057-4062.
95. C. H. Chen, J. T. Vaughey, A. N. Jansen, D. W. Dees, A. J. Kahaian, T. Goacher and M. M. Thackeray, "Studies of Mg-Substituted Li42xMgxTi5O12 Spinel Electrodes (0≦x≦1) for Lithium Batteries," J. Electrochem. Soc., 148 1 (2001) A102-A104
96. J. Wolfenstine and J. L. Allen, "Electrical conductivity and charge compensation in Ta doped Li4Ti5O12," J. Power Sources, 180 (2008) 582–585
97. J. Wolfenstine, U. Lee and J. L. Allen, "Electrical conductivity and rate-capability of Li4Ti5O12 as a function of heat-treatment atmosphere," J. Power Sources, 154 (2006) 287-289
98. K. S. Park, A. Benayad, D. J. Kang and S. G. Doo, "Nitridation-Driven Conductive Li4Ti5O12 for Lithium Ion Batteries," J. AM. CHEM. SOC., 130 (2008) 14930–14931
99. K. Matsubara, M. Danno, M. Inoue, Y. Honda, T. Abe, "Characterization of nitrogen-doped TiO2 powder prepared by newly developed plasma-treatment system," Chemical Engineering Journal 181– 182 (2012) 754– 760
100. M. Inagaki, "Carbon coating for enhancing the functionalities of materials," Carbon, 50 (2012) 3247-3266
101. Y. Wang, H. Liu and K. Wang, "Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon," J. Mater. Chem., 19 (2009) 6789–6795
102. G. N. Zhu, C. X. Wang and Y. Y. Xia, "A Comprehensive Study of Effects of Carbon Coating on Li4Ti5O12 Anode Material for Lithium-Ion Batteries," J. Electrochem. Soc., 158 2 (2011) A102-A109
103. G. N. Zhu and H. J. Liu, "Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries," Energy Environ. Sci., 4 (2011) 4016-4022
104. X. Hu, Z. Lin and K. Yang, "Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction," Electrochim. Acta, 56 (2011) 5046–5053
105. C. Y. Lin, Y. R. Jhan and J. G. Duh, "Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12 anode material," J. Alloys Compd., 509 (2011) 6965–6968
106. Y. R. Jhan and J. G. Duh, "Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction," J. Power Sources, 198 (2012) 294-297
107. H. G. Jung, S. T. Myung and C. S. Yoon, "Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries," Energy Environ. Sci., 4 (2011) 1345-1351
108. B. Li, C. Han, Y.-B. He, C. Yang, H. Du, Q.-H. Yang and F. Kang, "Facile synthesis of Li4Ti5O12/C composite with super rate performance," Energy Environ. Sci., 5 (2012) 9595-9602
109. H.-G. Jung, S.-T. Myung, C.S. Yoon, S.-B. Son, K. H. Oh, K. Amine, B. Scrosati, and Y.-K. Sun, “Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries”, Energy Environ. Sci., 4 (2011) 1345-1351
110. S. Zheng, Y. Xu, C. Zhao, H. Liu, X. Qian, and J. Wang, “Synthesis of nano-sized Li4Ti5O12/C composite anode material with excellent high-rate performance”, Mater. Lett., 68 (2012) 32-35.
111. T. Ogihara, M. Yamada, A. Fujita, S. Akao, and K. Myoujin, “Effect of organic acid on the electrochemical properties of Li4Ti5O12/C composite powders synthesized by spray pyrolysis”, Mater. Res. Bull., 46 (2011) 796-800.
112. B. Guo, Y. Li, Y. Yao, Z. Lin, L. Ji, G. Xu, Y. Liang, Q. Shi, and X. Zhang, “Electrospun Li4Ti5O12/C composites for lithium-ion batteries with high rate performance”, Solid State Ionics, 204-205 (2011) 61-65.
113. J. Gao, J. Ying, C. Jiang, and C. Wan, “High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries”, J. Power Sources, 166 (2007) 255-259.
114. H. Utsunomiya, T. Nakajima, Y. Ohzawa, Z. Mazej, B. Zemva and M. Endo, “Influence of conductive additives and surface fluorination on the charge/discharge behavior of lithium titanate (Li4/3Ti5/3O4)”, J. Power Sources, 195 (2010) 6805-6810.
115. Z. Lin, X. Hu, Y. Huai, L. Liu, Z. Deng, and J. Suo, “One-step synthesis of Li4Ti5O12/C anode material with high performance for lithium-ion batteries”, Solid State Ionics, 181 (2010) 412-415.
116. L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu, and F. Zhang, “In situ growth of Li4Ti5O12 on multi-walled carbon nanotubes: novel coaxial nanocables for high rate lithium ion batteries”, J. Mater. Chem., 21 (2011) 761-767.
117. X. Li, M. Qu, Y. Huai, and Z. Yu, “Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery”, Electrochim. Acta, 55 (2010) 2978-2982.
118. Y.R. Jhan, and J.G. Duh, “Synthesis of entanglement structure in nanosized Li4Ti5O12/multi-walled carbon nanotubes composite anode material for Li-ion batteries by ball-milling-assisted solid-state reaction”, J. Power Sources, 198 (2012) 294-297.
119. N. Zhu, W. Liu, M. Xue, Z. Xie, D. Zhao, M. Zhang, J. Chen, and T. Cao, “Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries”, Electrochim. Acta, 55 (2010) 5813-5818.
120. Y. Shi, L. Wen, F. Li, and H.-M. Cheng, “Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries”, J. Power Sources, 196 (2011) 8610-8617.
121. H. Xiang, B. Tian, P. Lian, Z. Li, and H. Wang, “Sol–gel synthesis and electrochemical performance of Li4Ti5O12/grapheme composite anode for lithium-ion batteries”, J. Alloys Compd., 509 (2011) 7205-7209.
122. Y. Tang, F. Huang, W. Zhao, Z. Liu, and D. Wan, “Synthesis of graphene-supported Li4Ti5O12 nanosheets for high rate battery application”, J. Mater. Chem., 22 (2012) 11257-11260.
123. C. M. Hayner, X. Zhao and H. H. Kung, "Materials for Rechargeable Lithium-Ion Batteries," Annu. Rev. Chem. Biomol. Eng., 3 (2012) 445-471
124. J. Li, Z. Tang, and Z. Zhang, “Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12”, Electrochem. Commun., 7 (2005) 894-899.
125. Y. Li, K. Xi, and X.P. Gao, “Electrochemical lithium storage of Li–Ti–O compound calcined at different temperatures”, Mater. Lett., 63 (2009) 304-306.
126. Y. Tang, L. Yang, S. Fang, and Z. Qiu, “Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithium ion batteries”, Electrochim. Acta, 54 (2009) 6244-6249.
127. Z. Qiu, L. Yang, Y. Tang, S. Fang, and J. Huang, “Li4Ti5O12 Nanoparticles Prepared with Gel-hydrothermal Process as a High Performance Anode Material for Li-ion Batteries”, Chin. J. Chem., 28 (2010) 911-915.
128. G. Li, J. Xia, J. Jiao, L. Chen, and P. Shen, “Low-temperature Synthesis of Peony-like Spinel Li4Ti5O12 as a High-performance Anode Material for Lithium Ion Batteries”, Chin. J. Chem., 29 (2011) 1824-1828.
129. R. Xu, J. Li, A. Tan, Z. Tang, and Z. Zhang, “Novel lithium titanate hydrate nanotubes with outstanding rate capabilities and long cycle life”, J. Power Sources, 196 (2011) 2283-2288.
130. Y. Li, G.L. Pan, J.W. Liu, and X.P. Gao, “Preparation of Li4Ti5O12 Nanorods as Anode Materials for Lithium-Ion Batteries”, J. Electrochem. Soc., 156 (2009) A495-A499.
131. J. Chen, L. Yang, S. Fang, and Y. Tang, “Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries”, Electrochim. Acta, 55 (2010) 6596-6600.
132. L. Kavan and M. Gra¨tzel, "Facile Synthesis of Nanocrystalline Li4Ti5O12 Spinel Exhibiting Fast Li Insertion," Electrochem. Solid-State Lett., 5 2 (2002) A39-A42
133. E. M. Sorensen, S. J. Barry and H.-K. Jung, "Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties," Chem. Mater., 18 (2006) 482-489
134. Y. S. Lin and J. G. Duh, "Facile synthesis of mesoporous lithium titanate spheres for high rate lithium-ion batteries," J. Power Sources, 196 (2011) 10698-10703
135. Y. Qi, Y. Huang, D. Jia, S.-J. Bao and Z. P. Guo, "Preparation and characterization of novel spinel Li4Ti5O12−xBrx anode materials," Electrochim. Acta, 54 (2009) 4772–4776
136. Dunn, H. Kamath, J.M. Tarascon, “Electrical energy storage for the grid: a battery of choices,” Science, 334 (2011) 928- 935.
137. Mark A. Hoefer, P.R. Bandaru, “Defect engineering of the electrochemical characteristics of carbon nanotube varieties,” J. Appl. Phys., 108 (2010) 1-6.
138. W.Y. Liao, H. Chang, Y.J. Yang, C. C. Hsu, I.C. Cheng, J.Z. Chen, “Oxygen-deficient indiumtin oxide thin films annealed by atmospheric pressure plasma jets with/without air-quenching”Appl. Surf. Sci. 292 (2014) 213–218.
139. T. Yuan, X. Yu, R. Cai, Y. Zhou, Z. Shao, “Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance,” J. Power Sources, 195 (2010) 4997- 5004.
140. C.Y. Lin, Y.R. Jhan, J. G. Duh, “Improved capacity and rate capability of Ru-doped and carbon-coated Li4Ti5O12 anode material,” J. Alloys Compd., 509 (2011) 6965- 6968.
141. N. Gherardi, G. Gouda, E. Gat, A. Ricard, F. Massines, “Transition from glow silent discharge to micro-discharges in nitrogen gas,” Plasma Sources Sci. Technol. 9 (2000) 340.
142. J. Zhang, J. Zhang, Z. Peng, W. Cai ,L. Yu, Z. Wu, Z. Zhang, “Outstanding rate capability and long cycle stability induced by homogeneous distribution of nitrogen doped carbon and titanium nitride on the surface and in the bulk of spinel lithium titanate,” Electrochim. Acta 132 (2014) 230–238.
143. Y. Fu, H. Ming, Q. Zhou, L. Jin, X. Li, J. Zheng, “Nitrogen-doped carbon coating inside porous TiO2 using small nitrogen-containing molecules for improving performance of lithium-ion batteries,” Electrochim. Acta 134 (2014) 478–485.
144. H.-G. Jung, S.-T. Myung C. S. Yoon, S.-B. Son, K. H. Oh, K. Amine, B. Scrosati and Y.-K. Sun, “Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries,” Energ. Environ. Sci., 4 (2011) 13451351.
145. N.C. Saha, H.G. Tompkins, “Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study,” J. Appl. Phys., 72 (1992) 3072- 3079.
146. Z. Wan, R. Cai, S. Jiang, Z. Shao, “Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance optimization,” J. Mater. Chem., 22 (2012) 17773- 17781.
147. Z. Liu, N. Zhang and K. Sun, “A novel grain restraint strategy to synthesize highly crystallized Li4Ti5O12 (∼20 nm) for lithium ion batteries with superior high-rate performance,” J. Mater. Chem., 22 (2012) 11688-11693.
148. B. Zhang, Y. Liu, Z. Huang, S. Oh, Y. Yu, Y.-W. Mai and J.-K. Kim, “Urchin-like Li4Ti5O12–carbon nanofiber composites for high rate performance anodes in Li-ion batteries”J. Mater. Chem., 22 (2012) 12133-12140.
149. A.Y. Shenouda, H.K. Liu, “Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode,” J. Alloys Compd., 477 (2009) 498- 503.
150. T.-F. Yi, S.-Y. Yang, M. Tao, Y. Xie, Y.-R. Zhu, R.-S. Zhu, “Synthesis and application of a novel Li4Ti5O12 composite as anode material with enhanced fast charge-discharge performance for lithium-ion battery,” Electrochim. Acta, 134 (2014) 377–383.
151. J. Wang, W. Li, Z. Yang, L. Gub and Y. Yu, “Free-standing and binder-free sodium-ion electrodes based on carbon-nanotube decorated Li4Ti5O12 nanoparticles embedded in carbon nanofibers,” RSC Adv., 4 (2014) 25220-25226.
152. X. Li, H. C. Lin, W. J. Cui, Q. Xiao, and J. B. Zhao, “Fast Solution-Combustion Synthesis of Nitrogen-Modified Li4Ti5O12 Nanomaterials with Improved Electrochemical Performance,” ACS Appl. Mater. Interfaces, 6 (2014), 7895−7901.
N.C. Saha and H.G. Tompkins, “Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study,” J. Appl. Phys., 72 (1992,) 3072- 3079.
153. C. Thomsen and S. Reich, “Double Resonant Raman Scattering in Graphite,” Phys. Rev. Lett. , 2000, 85, 5214
154. T. Yuan, R. Cai and Z. Shao, “Different Effect of the Atmospheres on the Phase Formation and Performance of Li4Ti5O12 Prepared from Ball-Milling-Assisted Solid-Phase Reaction with Pristine and Carbon-Precoated TiO2 as Starting Materials”J. Phys. Chem. C, 2011, 115, 4943–4952.
155. S A. Qayyum, S. Zeb, M.A. Naveed, N.U. Rehman, S.A. Ghauri and M. Zakaullah, “Optical emission spectroscopy of Ar–N2 mixture plasma,” J. Quant. Spectrosc. Radiat. Transfer, 2007, 107, 361–371.
156. S. Bockel, J. Amorim, G. Baravian, A. Ricard and P. A. Stratil, “A spectroscopic study of active species in DC and HF flowing discharges in N2-H2 and Ar-N2-H2 mixtures,” Plasma Sources Sci Technol., 1996, 5, 567-572.
157. P.J. Bruggeman, N. Sadeghi, D.C. Schram and V. Linss, “Gas temperature determination from rotational lines in non-equilibrium plasmas: a review,” Plasma Sources Sci. Technol., 2014, 23, 023001-023033.
158. S. Bhattacharyya, C. Cardinaud and G. Turban, “Spectroscopic determination of the structure of amorphous nitrogenated carbon films,” J. Appl. Phys., 1998, 83, 4491.
159. Y.H. Choi, J.H. Kim, K.H. Paek, W.T. Ju and Y.S. Hwang, “Characteristics of atmospheric pressure N2 cold plasma torch using 60-Hz AC power and its application to polymer surface modification,” Surf. Coat. Technol., 2005, 193, 319–324.
160. H.R. Barzegar, E. Gracia-Espino, T. Sharifi, F. Nitze and T. Wågberg, “Nitrogen Doping Mechanism in Small Diameter Single-Walled Carbon Nanotubes: Impact on Electronic Properties and Growth Selectivity,” J. Phys. Chem. C, 2013, 117, 25805−25816.
161. Z. Wan, R. Cai, S. Jiang and Z. Shao, “Nitrogen- and TiN-modified Li4Ti5O12: one-step synthesis and electrochemical performance optimization,” J. Mater. Chem., 2012, 22, 17773- 17781.
162. Xue. Li, H.C. Lin, W.J. Cui, Q. Xiao and J.B. Zhao, “Fast Solution-Combustion Synthesis of Nitrogen-Modified Li4Ti5O12 Nanomaterials with Improved Electrochemical Performance,” ACS Appl. Mater. Interfaces, 2014, 6, 7895−7901.
163. L. Zhao, Y.S. Hu, H. Li, Z. Wang, L. Chen, “Porous Li4Ti5O12 Coated with N-Doped Carbon from Ionic Liquids for Li-Ion Batteries”Adv. Mater. 2011, 23, 1385–1388.
164. M.S. Song, R.H. Kim, S.W. Baek, K.S. Lee, K. Park and A. Benayad, “Is Li4Ti5O12 a solid-electrolyte-interphase-free electrode material in Li-ion batteries? Reactivity between the Li4Ti5O12 electrode and electrolyte,” J. Mater. Chem. A, 2 (2014) 631–636.
165. Y.B. He, M. Liu, Z.D. Huang, B. Zhang, Y. Yu, B. Li, F. Kang, J.K. Kim, “Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries,” J. Power Sources, 239 (2013) 269-276.
166. C. Han, D. Yang, Y. Yang, B. Jiang, Y. He, M. Wang, A.Y. Song, Y.B. He, B. Li and Z. Lin, “Hollow titanium dioxide spheres as anode material for lithium ion battery with largely improved rate stability and cycle performance by suppressing the formation of solid electrolyte interface layer,” J. Mater. Chem. A, 3 (2015) 13340–13349.
167. B. Zhang, Y. Liu, Z. Huang, S. Oh, Y. Yu, Y.W. Mai and J.K. Kim, “Urchin-like Li4Ti5O12–carbon nanofiber composites for high rate performance anodes in Li-ion batteries,” J. Mater. Chem., 22 (2012) 12133–12140.
168. Z. Liu, N. Zhang and K. Sun, “A novel grain restraint strategy to synthesize highly crystallized Li4Ti5O12 (∼20 nm) for lithium ion batteries with superior high-rate performance,” J. Mater. Chem., 22 (2012) 11688–11693.
169. L.G. Bulusheva, A.V. Okotrub, A.G. Kurenya, H. Zhang, H. Zhang, X. Chen and H. Song, “Electrochemical properties of nitrogen-doped carbon nanotube anode in Li-ion batteries,” Carbon, 49 (2011) 4013-4023.
170. A.Y. Shenouda and H.K. Liu, “Studies on electrochemical behaviour of zinc-doped LiFePO4 for lithium battery positive electrode,” J. Alloys Compd. 477 (2009) 498- 503.
171. T.F. Yi, J.Z. Wu, M. Li, Y.R. Zhu, Y. Xie and R.S. Zhu, “Enhanced fast charge–discharge performance of Li4Ti5O12 as anode materials for lithium-ion batteries by Ce and CeO2 modification using a facile method,” RSC Adv. 5 ( 2015) 37367–37376
172. K. Wu , J. Yang, X.Y. Qiu, J.M. Xu, Q.Q. Zhang, J. Jin and Q. C. Zhuang, “Study of spinel Li4Ti5O12 electrode reaction mechanism by electrochemical impedance spectroscopy” Electrochimi. Acta, 108 (2013) 841-851.
173. N. Li, G. Zhou, F. Li, L. Wen and H.-M. Cheng, “Self-Standing and Flexible Electrode of Li4Ti5O12 Nanosheets with a N-Doped Carbon Coating for High Rate Lithium Ion Batteries,” Adv. Funct. Mater. 23 (2013) 5429–5435.
174. H. Li, L. Shen, K. Yin, J. Ji, J. Wang, X. Wang and X. Zhang, “Facile synthesis of N-doped carbon-coated Li4Ti5O12 microspheres using polydopamine as a carbon source for high rate lithium ion batteries,” J. Mater. Chem. A, 1(2013) 7270-7276.
175. Q. Qu, H. Geng, R. Peng, Q. Cui, X. Gu, F. Li, M. Wang, “Chemically Binding Carboxylic Acids onto TiO2 Nanoparticles with Adjustable Coverage by Solvothermal Strategy,” Langmuir 26 (2010) 9539-9546.
176. J. Wang, Z. Yang, W. Li, X. Zhong, L. Gu, Y. Yu, “Nitridation Br-doped Li4Ti5O12 anode for high rate lithium ion batteries,” J. Power Sources 266 (2014) 323-331.
177. Y. Gao, Z. Wang, L. Chen, “Stability of spinel Li4Ti5O12 in air,” J. Power Sources 245 (2014) 684-690.
178. M. S. Whittingham, “Lithium batteries and cathode materials,” Chem. Rev. 104 (2004) 4271-4301.
179. N.C. Saha, H.G. Tompkins, “Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study,” J. Appl. Phys. 72 (1992) 3072-3079.
180. Y. R. Jhan, J. G. Duh, “Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density,” Electrochim. Acta 63 (2012) 9-15.
181. Z. Zhu, F. Cheng, J. Chen, “Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites,” J. Mater. Chem. A 1 (2013) 9484-9490.
182. J. D. Wilcox, M. M. Doeff, M. Marcinek, R. Kostecki, “Factors Influencing the Quality of Carbon Coatings on LiFePO4,” J. Electrochem. Soc. 154 (2007) A389-A395.
183. K. S. W. Sing, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity,” Pure & Appl. Chem. 54 (1982) 2201-2218.
184. W. Wang, J. Tu, S. Wang, J. Hou, H. Zhu, S. Jiao, “Nanostructured Li4Ti5O12 synthesized in a reverse micelle: A bridge between pseudocapacitor and lithium ion battery,” Electrochimi. Acta 68 (2012) 254-259.
185. G.T.K. Fey, C.Z. Lu, T.P. Kumar, “Preparation and electrochemical properties of high-voltage cathode materials, LiMyNi0.5−yMn1.5O4 (M=Fe, Cu, Al, Mg; y=0.0–0.4),” J. Power Sources 115 (2003) 332-345.
186. A. Y. Shenouda, H. K. Liu, “Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems.” J. Power Sources 185 (2008) 1386-1391.
187. Q. Zhang, Y. Liu, H. Lu, D. Tang, C. Ouyang, L. Zhang, “Ce3+-doped Li4Ti5O12 with CeO2 surface modification by a sol-gel method for high-performance lithium-ion batteries,” Electrochimi. Acta 189 (2016) 147–157.
188. K.T. Kim, C.Y. Yu, C.S. Yoon, S.J. Kim, Y.K. Sun, S.T. Myung, “Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries”, Nano Energy 12 (2015) 725–734.
189. J. Liu, K. Tang, K. Song, P. A van Aken, Y. Yu, Maier, “Tiny Li4Ti5O12 nanoparticles embedded in carbon nanofibers as high-capacity and long-life anode materials for both Li-ion and Na-ion batteries,” J. Physc Chem Chem Phys 15 (2013) 20813-20818
190. J. Wang, W. Li, Z. Yang, L. Gu, Y. Yu, “Free-standing and binder-free sodium-ion electrodes based on carbon-nanotube decorated Li4Ti5O12 nanoparticles embedded in carbon nanofibers,” RSC Adv 4 (2014) 25220-25226
191. C.K. Lan, Q. Bao, Y.H. Huang, J.G. Duh, “Embedding nano- Li4Ti5O12 in hierarchical porous carbon matrixes derived from water soluble polymers for ultra-fast lithium ion batteries anodic materials,” J Alloy Compd. 675 (2016) 336-348.