簡易檢索 / 詳目顯示

研究生: 連志恒
Lien, Chih-Heng
論文名稱: 利用電泳沉積製備染料敏化太陽能電池中的多壁奈米碳管對應電極
Multi-Wall Carbon Nanotubes Based Counter Electrodes for Dye-Sensitized Solar Cells by Electrophoretic Deposition
指導教授: 萬其超
Wan, Chi-Chao
口試委員: 竇維平
陳正文
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 80
中文關鍵詞: 多壁奈米碳管電泳沉積染料敏化太陽能電池對應電極
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,染料敏化太陽能電池(Dye-sensitized solar cells, DSSC)因其高效率、低成本和簡單的製程而引起廣泛的注意。其中,白金電極在DSSC的對應電極上扮演降低過電位和加速I3-還原速率的角色,然而,因為白金的使用會造成DSSC成本的上升,所以很多替代性材料已被研發來取代白金對應電極。其中,多壁奈米碳管因為具有較大的比表面積和快速的電子傳遞特性,使其有潛力的替代性材料。
    現今,有許多製備多壁奈米碳管的方式,例如網印、刮刀塗佈漢化學氣相沈積。但目前的製備方式大多需要高溫製程,而高溫製程將會限制可撓式基板的應用於DSSC上,因此在本實驗中,利用奈米碳的的電泳沈積製備染料敏化太陽能電池的奈米碳管對應電極
    在本篇論文中,應用奈米碳管的電泳沈積技術製備染料敏化太陽能電池中的奈米碳管對應電極。首先,利用硫酸和硝酸的混合溶劑改質奈米碳管表面,使奈米碳管表面官能基化。然後根據藉由拉曼光譜和掃描式電子顯微鏡的分析,可以推知奈米碳管在改質過程中,會使碳管表面產生缺陷和造成奈米碳管的斷裂。而這些缺陷和斷面會成為一個催化點,促進電解質中的I3-還原成I-,進而提升染料敏化太陽能電池的效率。因此在本實驗中可藉由改質技術將DSSC效率從大幅提升。此外,藉由CV的分析,可證實用電泳沈積方式製備的奈米碳管電極具有良好的穩定性。將本實驗製作的奈米碳管電極和刮刀塗佈比較,並藉由膠帶測試碳膜的附著力,可證實本實驗所製備的奈米碳管電極具有較佳的附著力,此外,利用CV分析奈米碳管的催化活性,可發現由電泳沈積所製備的電極具有較佳的催化性,這是因為刮刀塗佈中碳膜的黏著劑所造成的屏障,使其活性下降。因此,在本論文中可證實,利用電泳沈積技術製備奈米碳管電極具有相當大的潛力於低成本DSSC的應用.


    In recent years, dye-sensitized solar cells (DSSCs) have aroused intensive interests due to their high efficiency, low cost, and simple fabrication procedure. Pt is still the effective catalytic material for a DSSC counter electrode to reduce voltage loss and speed up the reduction of triiodide (I3-) ions. In order to reduce the cost of DSSCs, great deals of alternatives have been proposed to replace noble Pt. Multi-wall carbon nanotube (MWCNT) is one of the promising alternatives due to its high specific surface area and rapid electron transfer nature. Until now, various approaches have been made to fabricate MWCNT-base counter electrode, such as screen printing, doctor-blade and chemical vapor deposition. Most of methods must need the requirement of high temperature treatment to remove binder from the paste after the coating. The use of heat treatment limits the application in plastic substrates, and thus a low temperature method to fabricate the MWCNT-base film is needed for flexible DSSCs.

    In this study, electrophoretic deposition (EPD) was employed to make MWCNT-base counter electrode for DSSC. Firstly, an acid mixture solution was used to functionalize MWCNTs. According to the Raman spectra and SEM results, the defects and open-ends were observed by chemical functionalization. In general, those defects and open-ends would become catalytic sites and benefit the enhancement in the catalytic ability of MWCNTs. Consequently, it can be observed that the catalytic ability of MWCNT-base electrode and the efficiency of DSSC assembled with MWCNT-base counter electrode were much improved by the optimization of surface functionalization on the MWCNT. In addition, the CV test demonstrated that an excellent electrochemical stability of the prepared MWCNT counter electrode can be obtained. Comparing with tape-cast, the CNT electrode fabricated by EPD had better adhesion and catalytic ability because the binder added into the paste for coating CNT film by doctor blade which may produce some shielding effect on CNT and lower its catalytic ability. Therefore, the MWCNT electrode prepared by EPD could be great potential for use in low-cost DSSCs.

    Table of Contents ABSTRACT……………………………………………………………………………………………….………..I 摘要 III CHAPTER 1: INTRODUCTION AND LITERATURE SURVEY 1 1-1 Overview of Dye-Sensitized Solar Cells (DSSCs) 1 1-1.1 Introduction of DSSCs 1 1-1.2 Structures and Operational Principle of DSSC 2 1-1.3 The Counter Electrode (CE)-Electrochemical Catalytic: 4 1-2 Introduction of Carbon Nanotubes (CNTs) 9 1-2.1 Background of CNTs 9 1-2.2 Methods for Synthesizing Carbon Nanotubes 10 1-2.3 Properties of CNTs 14 1-3 Electrophoretic Deposition (EPD) 17 1-3.1 Introduction of Electrophoresis 17 1-3.2 The Methods to Disperse MWCNTs in Solvents 18 1-3.3 Solvent for CNT Suspension Solution 20 1-3.4 Application of CNT Electrophoretic Deposition 21 1-4 The 23 Factorial design 24 1-5 Motivation of This Study 28 CHAPTER 2: EXPERIMENTAL SECTION 29 2-1 Preparation of CNT-based Cathode by EPD 29 2-1.1 Material 29 2-1.2 Dispersing the CNT in the Organic Solution by Chemical Functionalization. 30 2-1.3 Electrophoretic Deposition of MWCNT on FTO Conductive Glass 31 2-2 Preparation of CNT-based Cathode by Tape-cast 32 2-3 Cyclic Voltammetry (CV) Measurement 33 2-4 Preparation of DSSC 34 2-4.1 Material 34 2-4.2 Preparation of Photoanode 34 2-4.3 DSSC Assembly 35 2-5 Introduction of Instrument 36 2-5.1 Scanning Electron Microscopy (FE-SEM) 36 2-5.2 Fourier Transform Infrared Spectroscopy 36 2-5.3 Raman spectroscopy 37 2-5.4 Cell Efficiency 40 CHAPTER 3: RESULTS AND DISCUSSION 42 3-1 CNT Suspension Solution 42 3-2 Raman spectroscopy of functionalized CNT 43 3-3 FTIR spectroscopy of functionalized CNT: 45 3-3.1 CNT A 45 3-3.2 CNT B 46 3-4 FESEM images for CNT 48 3-5 Factorial design for developing EPD process 50 3-6 Cyclic Voltammetry for CNT A 54 3-7 Effect of reflux time on the functionalization of CNT by Raman spectroscopy response. 57 3-8 Cyclic Voltammetry for CNT electrode with different thickness of CNT film 59 3-8.1 CNT A 59 3-8.2 CNT B 64 3-9 The I-V characteristics of the DSSCs with CNT counter electrodes 67 3-9.1 CNT A 67 3-9.2 CNT B 68 3-10 The optimal condition for functionalizing CNT by refluxing 70 3-11 Durability of CNT electrode by EPD 71 3-12 Comparing with tape-cast: 72 3-12.1 Adhesion between CNT film and FTO glass substrate 72 3-12.2 Performance of CNT electrodes 72 CHAPTER 4: CONCLUSION 74 CHAPTER 5: FUTURE WORK 76 CHAPTER 6: REFERENCE 77

    [1]. P.Wang, B.W., R. Humphry-Baker, J. E. Moser, J. Teuscher, W. kantlehner, j. Mezger, E V. Stoyanov, S. M. Zakeeruddin, and M. Gratzel. J. Am. Chem. Soc 127, 6850-6856 (2005).
    [2]. H. Vogel, Berlin, 1878.
    [3]. H. Meier, J. Phys. Chem., 69, 719 (1965)
    [4]. H. Tributsch, M. Calvin, Photochem. Photobiol., 14, 95(1971)
    [5]. R. Memming, H. Tributsch, J. Phy. Chem., 75, 562(1971)
    [6]. H. Gerischer, Photochem. Photobiol., 16, 243(1972).
    [7]. C. W. Tang, Appl. Phys. Lett., 48, 183(1986)
    [8]. M. Grätzel, Journal of Photochemistry and Photobiology A: Chemistry 164, 3-14(2004).
    [9]. J. Desilvestrto, M. Grätzel, L. Kavan, J. Moser, J. Am. Chem. Soc. 107, 2988(1985)
    [10]. N. Papageorgiou,W.F. Maier, M. Gratzel, J. Electrochem. Soc.144 876–907(1997) 0
    [11]. A. Hauch, A. Georg, Electrochim. Acta 46 3457–3466 (2001).
    [12]. A. Kay, M. Gratzel, Sol. Energy Mater. Sol. Cells 44 (1996) 99.
    [13]. K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Chem. Lett. 32 28(2002)
    [14]. Easwaramoorthi Ramasamy, Won Jae Lee, Dong Yoon Lee, Jae Sung Song, Electrochemistry Communications 10 1087–1089 (2008)
    [15]. D. W. Zhang , X. D. Li, S. Chen, F. Tao, Z. Sun, X. J. Yin, S. M. Huang, J Solid State Electrochem 14:1541–1546(2010)
    [16]. Won Jae Lee, Easwaramoorthi Ramasamy, Dong Yoon Lee, and Jae Sung Song, Applied Material & interfaces, 1, 6, 1145–1149 (2009)
    [17]. Jung Gyu Nam, Young Jun Park, Bum Sung Kim, and Jai Sung Lee Scripta Materialia 62 (2010) 148–150T.
    [18]. S. Iijima, Nature, 56, 354(1991)
    [19]. The electrochemical Society Interface (2006)
    [20]. H. Dai, Acc, Chem. Res 2002, 35, 1035
    [21]. 奈米碳管,成會明編著, 五南出版社
    [22]. 奈米碳管專論,徐文光教授編著
    [23]. 奈米結構材料科學,郭正次 朝春光 編著, 全華出版社
    [24]. S. Cui, P. Scharff, C. Siegmund, D. Carbon , 42, 931(2004)
    [25]. T.W. Ebbesen, P.M. Ajayan, Nature 358, 220(1992)
    [26]. http://blog.udn.com/ncumaterials/3967547
    [27]. T. Guo, P. Nikolaev, A. Thess, Chem. Phys. Lett. 243, 49(1995)
    [28]. C. Journet, P. Bernier, Appl. Phys. A, 67, 1(1998)
    [29]. M. M. J. Treacy, T. W. Ebbesen, Nature, 381, 678(1996)
    [30]. J. J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F. J. Mearns, J. G. Shapter and D. B. Hibbert, J. Am. Chem. Soc., 125, 9006,(2003).
    [31]. E. Katz and I. Willner, ChemPhysChem, , 5, 1084(2004).
    [32]. Banks, C. E.; Davies, T. J.; Wildgoose, G. G.; Compton, R. G. Chem. Commun., 7, 829–841(2005).
    [33]. http://en.wikipedia.org/wiki/Home_page
    [34]. Moon JM, An KH, Lee YH, Park YS, Bae DJ, Park GS. J Phys Chem B,105(24):5677–81(2001).
    [35]. Zhao H, Song H, Li Z, Yuan G, Jin Y. Appl Surf Sci 251:242–4(2005).
    [36]. Zhao H, Song H, Li Z, Yuan G, Jin Y. Appl Surf Sci;251:242–4(2005).
    [37] Niu C, Sichel EK, Hoch R, Moy D, Tennent H. Appl Phys Lett;70(11):1480–2(1997).
    [38] Thomas BJC, Boccaccini AR, Shaffer MSP, J Am Ceram Soc;88(4):980–2(2005).
    [39] Choi WB, Jin YW, Kim HY, Lee SJ, Yun MJ, Kang JH, et al, Appl Phys Lett;78(11):1547–9 (2001)
    [40] Du CS, Heldbrant D, Pan N. Mater Lett;57(2):434–8(2002).
    [41] Du CS, Heldebrant D, Pan N. J Mater Sci Lett;21(7):565–8(2002).
    [42] Zhao H, Song H, Li Z, Yuan G, Jin Y. Appl Surf Sci;251:242–4(2005).
    [43] Bae J, Yoon Y, Lee S, Baik H. Physica B;323:169–70(2002).
    [44] Kurnosov D, Bugaev AS, Nikolski KN, Tchesov R, Appl Surf Sci;215:232–6(2003).
    [45] Ma H, Zhang L, Zhang J, Zhang L, Yao N, Zang B. Appl Surf Sci;251:258–61(2005).
    [46] Nakayama Y, Akita S. Synthetic Metals;117:207–10(2001).
    [47] Yu K, Zhu Z, Li Q, Lu W. Appl Phys A;77:811–7(2003).
    [48] Oh S, Zhang J, Cheng Y, Shimoda H, Zhou O. Appl Phys Lett;84:3738–40(2004).
    [49] Girishkumar G, Vinodgopal K, Kamat PV. J Phys Chem B;108(52):19960–6(2004).
    [50] Girishkumar G, Rettker M, Underhile R, Binz D, Vinodgopal K, McGinn P, Kamat P. Langmuir;21(18):8487–94(2005).
    [51] Barazzouk S, Hotchandani S, Vinodgopal K, Kamat P. J Phys Chem B;108:17015–8(2004).
    [52] Kamat P, Thomas K, Barazzouk S, Girishkumar G, Vinodgopal K, Meisel D. J Am Chem Soc;126:10757–62(2004).
    [53] Gao B, Yue GZ, Qiu Q, Cheng Y, Shimoda H, Fleming L, et al. Adv Mater;13(23):1770–3(2001).
    [54] Lee CY, Chuang HM, Li SY, Lin P, Tseng TY. J Electrochem Soc;152(4):A716–20(2005).
    [55] Shaffer MS, Fan X, Windle AH. Carbon;36(11):1603–12(1998).
    [56] Zao L, Gao L. Carbon;42:423–60 (2004).
    [57] Correa-Duarte MA, Wagner N, Rojas-Chapana J, Morsczeck C, Thie M, Giersig M. Nano Lett;4(11):2233–6(2004).
    [58] Macdonald RA, Laurenzi RF, Viswanathan G, Ajayan PM, Stegemann JP. J Biomed Mater Res A;74A(3): 489–96 (2005).
    [59] Li XH, Niu JL, Zhang J, Li HL, Liu ZF. J Phys Chem B;107(11):2453–8(2003).
    [60] Ye XR, Lin YH, Wai CM, Talbot JB, Jin SH. J Nanosci Nanotech;5(6):964–9(2005).
    [61] Lee SH, Pumprueg S, Moudgil B, Sigmund W. Colloid Surf B: Biointerfaces;40(2):93–8(2005).
    [62] Sun J, Iwasa M, Gao L, Zhang Q. Carbon;42:885–901(2004).
    [63] Lee S, Sigmund WM. Chem Commun (6):780–1(2003).
    [64] Satishkumar BC, Vogl EM, Govindaraj A, Rao CNR. J Phys D – Appl Phys;29(12):3173–6(1996).
    [65] Colorado R, Barron. Chem Mater;16(14):2691–3(2004).
    [66] Li W, Wang X, Chen Z, Waje M, Yan Y. Langmuir;21:9386–9(2005).
    [67] Li HJ, Wang XB, Song YL, Liu YQ, Li QS, Jiang L, et al. Angew Chem Int Ed;40(9):1743–6(2001).
    [69]. http://search.newport.com/?q=*&x2=sku&q2=91160
    [70] Johann Cho, Katarzyna Konopka, Krzysztof Ro_zniatowski, Eva Garcı´a-Lecina, Milo S.P. Shaffer, Aldo R. Boccaccini, Carbon, 4758–67(2009)
    [71]. T.N. Murakami, S. Ito, Q. Wang, Md.K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R.H. Baker, P. Comte, P. Pechy, M. Gratzel, J. Electrochem. Soc. 153 A2255 (2006).
    [72] Design and Analysis of Experiments, Douglas C. Montgomery. Wiley international edition.
    [73] 熱化學氣相沈積法成長橫向碳奈米館之電性研究, 陳志豪, 黃豐原

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE