研究生: |
楊哲寧 Yang, Tse-Ning |
---|---|
論文名稱: |
硒化鋅奈米線應用於高性能軟性光偵測元件 High Performance Flexible Photodetector Based on ZnSe Nanowires |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: |
吳文偉
Wu, Wen-Wei 呂明諺 Lu, Ming-Yen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 硒化鋅 、奈米線 、軟性 、光偵測 |
外文關鍵詞: | ZnSe, nanowire, flexible, photodetector |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,軟性光偵測元件因其具有優良的可撓曲特性、穩定的電性和高靈敏度被廣泛應用在穿戴式裝置。某些一維奈米結構的半導體材料因為具有很好的光電性質為柔性光電探測器提供許多機會和功能。II-VI族n-type硒化鋅半導體材料具有約2.67 eV (約465 nm)直接能隙。相對於本質半導體(矽)、III-V族半導體(砷化鎵),硒化鋅對藍光/紫外光的偵測更為靈敏。在本論文研究中,高長徑比的單晶硒化鋅奈米線於雙石英管系統中經由化學氣象沉積成長於矽基板上。為了瞭解硒化鋅奈米線的光電性質,利用黃光微影製程製作金屬-半導體-金屬結構的單根硒化鋅奈米線光偵測元件,並使用405 nm波長的藍光雷射於不同光功率及施加不同偏壓的條件下量測。在製作軟性光偵測元件上,成功的透過接觸轉印的方式將其轉移至PDMS/聚亞醯胺基板,再將金指差電極鍍在硒化鋅奈米線上作為電極。在相同的量測條件下,硒化鋅軟性光測元件具有很高的光開關特性及很快的光響應速度,此外,透明的聚亞醯胺基板提供傑出的可撓曲性,使此光偵測元件可以在彎曲180度的情況有效的運作。種種優良性能顯示以硒化鋅奈米線為材料所製備的軟性光偵測元件有潛力作為實際應用的元件。
In recent years, flexible photodetectors are widely utilized in wearable devices and other special applications due to the advantages of outstanding flexibility, superb electronic stability and high detectivity. One-dimensional nanostructures of semiconductors provide many opportunities and capabilities for applications in flexible photodetectors as they may possess great photoelectric properties. Zinc selenide (ZnSe), a II–VI compound n-type semiconductor with a wide direct bandgap of ~2.67 eV (~465 nm), has higher sensibility of blue/UV light, comparing to other intrinsic (Si) and III-V semiconductors (GaAs). In the present research, single-crystalline ZnSe nanowires with high aspect ratio were grown on silicon substrate in a double tube system by chemical vapor deposition (CVD). A single ZnSe nanowire photodetector with a meatal-semiconductor-metal (MSM) structure was fabricated by typical photolithography procedures. The basic photoelectric properties of a single nanowire under 405 nm blue laser irradiance with different power intensities and bias voltages were investigated. For flexible device, ZnSe nanowires were successfully transferred on PDMS/polyimide substrate via the contact printing method. Au interdigitated electrodes were then deposited on ZnSe nanowires to form a MSM structure. With same measurement conditions, the as-fabricated photodetector exhibits high on/off photoswitching characteristic and fast photoresponse speed both on rise and on fall. In addition, the highly transparent polyimide substrate provides excellent mechanical flexibility so that our photodetector can be effectively operated under bending up to 180o. The excellent performance indicates that the high quality ZnSe nanowires based flexible photodetector on transparent polyimide substrate may lead to practical applications.
References
1. Bube, R. H., Photoconductivity of solids. RE Krieger Pub. Co.: 1978.
2. Petritz, R. L., Theory of photoconductivity in semiconductor films. Physical Review 1956, 104, 1508.
3. Würthner, F., Generating a photocurrent on the nanometer scale. Science 2006, 314, 1693-1694.
4. Zalewski, E. F.; Duda, C. R., Silicon photodiode device with 100% external quantum efficiency. Appl. Opt. 1983, 22, 2867-2873.
5. Weckler, G. P., Operation of p-n junction photodetectors in a photon flux integrating mode. IEEE Journal of Solid-State Circuits 1967, 2 (3), 65-73.
6. Han, T.-H.; Lee, Y.; Choi, M.-R.; Woo, S.-H.; Bae, S.-H.; Hong, B. H.; Ahn, J.-H.; Lee, T.-W., Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photon 2012, 6, 105-110.
7. Kaltenbrunner, M.; White, M. S.; Glowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S., Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 2012, 3, 770.
8. Sun, J.-G.; Yang, T. N.; Kuo, I. S.; Wu, J.-M.; Wang, C.-Y.; Chen, L.-J., A leaf-molded transparent triboelectric nanogenerator for smart multifunctional applications. Nano Energy 2017, 32, 180-186.
9. Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T., Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays. Science 2009, 326, 1516-1519.
10. Hu, J. In Overview of flexible electronics from ITRI's viewpoint, 2010 28th VLSI Test Symposium (VTS), 19-22 April 2010; 2010; pp 84-84.
11. Pratishtha Agnihotri, M. J., Ruchita Bajpai, Flexible Electronics Revolutionizing the Electronics World. IJECT 2013, 4 (SPL-4).
12. Hou, X.; Liu, B.; Wang, X.; Wang, Z.; Wang, Q.; Chen, D.; Shen, G., SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems. Nanoscale 2013, 5, 7831-7.
13. Chen, G.; Wang, W.; Wang, C.; Ding, T.; Yang, Q., Controlled synthesis of ultrathin Sb2Se3 nanowires and application for flexible photodetectors. Adv Sci (Weinh) 2015, 2, 1500109.
14. Bai, S.; Wu, W.; Qin, Y.; Cui, N.; Bayerl, D. J.; Wang, X., High-Performance Integrated ZnO Nanowire UV Sensors on Rigid and Flexible Substrates. Advanced Functional Materials 2011, 21, 4464-4469.
15. Feynman, R. P., There’s plenty of room at the bottom. Eng. Sci. 1960, 23, 22-36.
16. Taniguchi, N. In On the basic concept of nanotechnology, Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974; pp 18-23.
17. Basic Energy Science (BES), “The scale of Things.” Retrieved May 26, 2006, from http://science.energy.gov/bes/news-and-resources/scale-of-things-chart/
18. Alivisatos, A. P., Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933-937.
19. Krans, J.; Van Ruitenbeek, J.; Fisun, V.; Yanson, I.; De Jongh, L., The signature of conductance quantization in metallic point contacts. Nature 1995, 375, 767-769.
20. Lu, W.; Lieber, C. M., Nanoelectronics from the bottom up. Nat Mater 2007, 6, 841-850.
21. Chen, L. J., Silicon nanowires: the key building block for future electronic devices. Journal of Materials Chemistry 2007, 17, 4639-4643.
22. Persson, A. I.; Larsson, M. W.; Stenstrom, S.; Ohlsson, B. J.; Samuelson, L.; Wallenberg, L. R., Solid-phase diffusion mechanism for GaAs nanowire growth. Nat Mater 2004, 3, 677-681.
23. Zhang, X.-M.; Lu, M.-Y.; Zhang, Y.; Chen, L.-J.; Wang, Z. L., Fabrication of a High-Brightness Blue-Light-Emitting Diode Using a ZnO-Nanowire Array Grown on p-GaN Thin Film. Advanced Materials 2009, 21 (27), 2767-2770.
24. Chen, M. T.; Lu, M. P.; Wu, Y. J.; Song, J.; Lee, C. Y.; Lu, M. Y.; Chang, Y. C.; Chou, L. J.; Wang, Z. L.; Chen, L. J., Near UV LEDs made with in situ doped p-n homojunction ZnO nanowire arrays. Nano Lett 2010, 10, 4387-93.
25. Hayden, O.; Agarwal, R.; Lieber, C. M., Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat Mater 2006, 5, 352-356.
26. Wei, T.-Y.; Huang, C.-T.; Hansen, B. J.; Lin, Y.-F.; Chen, L.-J.; Lu, S.-Y.; Wang, Z. L., Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Applied Physics Letters 2010, 96, 013508.
27. Ma, C.; Wang, Z. L., Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing. Advanced Materials 2005, 17, 2635-2639.
28. He, Z.; Jie, J.; Zhang, W.; Zhang, W.; Luo, L.; Fan, X.; Yuan, G.; Bello, I.; Lee, S. T., Tuning electrical and photoelectrical properties of CdSe nanowires via indium doping. Small 2009, 5, 345-50.
29. Wagner, R.; Ellis, W., Vapor‐liquid‐solid mechanism of single crystal growth. Applied Physics Letters 1964, 4, 89-90.
30. Zhang, Q.; Li, H.; Ma, Y.; Zhai, T., ZnSe nanostructures: Synthesis, properties and applications. Progress in Materials Science 2016, 83, 472-535.
31. Haase, M.; Qiu, J.; DePuydt, J.; Cheng, H., Blue‐green laser diodes. Applied Physics Letters 1991, 59, 1272-1274.
32. Lokhande, C.; Patil, P.; Tributsch, H.; Ennaoui, A., ZnSe thin films by chemical bath deposition method. Solar Energy Materials and Solar Cells 1998, 55, 379-393.
33. Fang, X.; Xiong, S.; Zhai, T.; Bando, Y.; Liao, M.; Gautam, U. K.; Koide, Y.; Zhang, X.; Qian, Y.; Golberg, D., High-performance blue/ultraviolet-light-sensitive znse-nanobelt photodetectors. Advanced Materials 2009, 21, 5016-5021.
34. Oksenberg, E.; Popovitz-Biro, R.; Rechav, K.; Joselevich, E., Guided growth of horizontal ZnSe nanowires and their integration into high-performance blue-UV photodetectors. Adv Mater 2015, 27, 3999-4005.
35. Salfi, J.; Philipose, U.; de Sousa, C. F.; Aouba, S.; Ruda, H. E., Electrical properties of Ohmic contacts to ZnSe nanowires and their application to nanowire-based photodetection. Applied Physics Letters 2006, 89, 261112.
36. Fan, Z.; Mohammad, S. N.; Kim, W.; Aktas, Ö.; Botchkarev, A. E.; Morkoç, H., Very low resistance multilayer Ohmic contact to n‐GaN. Applied Physics Letters 1996, 68, 1672-1674.
37. Cheung, S.; Cheung, N., Extraction of Schottky diode parameters from forward current‐voltage characteristics. Applied Physics Letters 1986, 49, 85-87.
38. Liang, S.; Sheng, H.; Liu, Y.; Huo, Z.; Lu, Y.; Shen, H., ZnO Schottky ultraviolet photodetectors. Journal of Crystal Growth 2001, 225, 110-113.
39. Geng, C.; Jiang, Y.; Yao, Y.; Meng, X.; Zapien, J. A.; Lee, C. S.; Lifshitz, Y.; Lee, S. T., Well-aligned ZnO nanowire arrays fabricated on silicon substrates. Advanced Functional Materials 2004, 14, 589-594.
40. Philipose, U.; Xu, T.; Yang, S.; Sun, P.; Ruda, H. E.; Wang, Y. Q.; Kavanagh, K. L., Enhancement of band edge luminescence in ZnSe nanowires. Journal of Applied Physics 2006, 100, 084316.
41. Philipose, U.; Yang, S.; Xu, T.; Ruda, H. E., Origin of the red luminescence band in photoluminescence spectra of ZnSe nanowires. Applied Physics Letters 2007, 90, 063103.
42. Li, C.; Bando, Y.; Liao, M.; Koide, Y.; Golberg, D., Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Applied Physics Letters 2010, 97, 161102.
43. Guo, D. Y.; Wu, Z. P.; An, Y. H.; Guo, X. C.; Chu, X. L.; Sun, C. L.; Li, L. H.; Li, P. G.; Tang, W. H., Oxygen vacancy tuned Ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors. Applied Physics Letters 2014, 105, 023507.
44. Mukherjee, B.; Tok, E. S.; Sow, C. H., Photocurrent characteristics of individual GeSe2 nanobelt with Schottky effects. Journal of Applied Physics 2013, 114, 134302.
45. Katz, O.; Garber, V.; Meyler, B.; Bahir, G.; Salzman, J., Gain mechanism in GaN Schottky ultraviolet detectors. Applied Physics Letters 2001, 79, 1417-1419.
46. Leung, K.; Wright, A. F.; Stechel, E. B., Charge accumulation at a threading edge dislocation in gallium nitride. Applied Physics Letters 1999, 74, 2495-2497.
47. Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D.; Park, J.; Bao, X.; Lo, Y.-H.; Wang, D., ZnO nanowire UV photodetectors with high internal gain. Nano letters 2007, 7, 1003-1009.
48. Zhang, X.; Jie, J.; Wang, Z.; Wu, C.; Wang, L.; Peng, Q.; Yu, Y.; Jiang, P.; Xie, C., Surface induced negative photoconductivity in p-type ZnSe: Bi nanowires and their nano-optoelectronic applications. Journal of Materials Chemistry 2011, 21, 6736-6741.
49. Chen, G.; Liu, Z.; Liang, B.; Yu, G.; Xie, Z.; Huang, H.; Liu, B.; Wang, X.; Chen, D.; Zhu, M.-Q.; Shen, G., Single-crystalline p-Type Zn3As2 nanowires for field-effect transistors and visible-light photodetectors on rigid and flexible substrates. Advanced Functional Materials 2013, 23, 2681-2690.
50. Chen, G.; Liang, B.; Liu, Z.; Yu, G.; Xie, X.; Luo, T.; Xie, Z.; Chen, D.; Zhu, M.-Q.; Shen, G., High performance rigid and flexible visible-light photodetectors based on aligned X(In, Ga)P nanowire arrays. J. Mater. Chem. C 2014, 2, 1270-1277.
51. Tian, W.; Zhang, C.; Zhai, T.; Li, S. L.; Wang, X.; Liu, J.; Jie, X.; Liu, D.; Liao, M.; Koide, Y.; Golberg, D.; Bando, Y., Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. Adv Mater 2014, 26, 3088-93.
52. Hu, X.; Zhang, X.; Liang, L.; Bao, J.; Li, S.; Yang, W.; Xie, Y., High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials 2014, 24, 7373-7380.
53. Xue, D. J.; Wang, J. J.; Wang, Y. Q.; Xin, S.; Guo, Y. G.; Wan, L. J., Facile synthesis of germanium nanocrystals and their application in organic-inorganic hybrid photodetectors. Adv Mater 2011, 23, 3704-7.
54. Wang, X.; Song, W.; Liu, B.; Chen, G.; Chen, D.; Zhou, C.; Shen, G., High-Performance Organic-Inorganic hybrid photodetectors based on P3HT:CdSe nanowire heterojunctions on rigid and flexible substrates. Advanced Functional Materials 2013, 23, 1202-1209.
55. Game, O.; Singh, U.; Kumari, T.; Banpurkar, A.; Ogale, S., ZnO(N)-Spiro-MeOTAD hybrid photodiode: an efficient self-powered fast-response UV (visible) photosensor. Nanoscale 2014, 6, 503-13.
56. Deng, M.; Shen, S.; Wang, X.; Zhang, Y.; Xu, H.; Zhang, T.; Wang, Q., Controlled synthesis of AgInS2 nanocrystals and their application in organic–inorganic hybrid photodetectors. CrystEngComm 2013, 15, 6443-.
57. Wang, J.-J.; Hu, J.-S.; Guo, Y.-G.; Wan, L.-J., Wurtzite Cu2ZnSnSe4 nanocrystals for high-performance organic–inorganic hybrid photodetectors. NPG Asia Materials 2012, 4, e2.