簡易檢索 / 詳目顯示

研究生: 吳旻駿
Wu, Ming-Chun
論文名稱: 極小沙利文模型與有理同倫群
Minimal Sullivan Models and Rational Homotopy Groups
指導教授: 鄭志豪
口試委員: 鄭志豪
何南國
許義容
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 31
中文關鍵詞: 沙利文模型極小沙利文模型有理同倫群同倫群沙利文
外文關鍵詞: Sullivan Model, Minimal Sullivan Model, Rational Homotopy Group, Homotopy Group, Sullivan
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文釐清了如何使用一個單連通空間X的上同調代數計算X的"唯一"的極小沙利文模型進而計算X的有理同倫群。此外,一個在有理同倫型與最小沙利文代數這兩個範疇之間的一一對映被建立了。


    This monograph clarfi es how to use the cohomology algebra of a simply connected space X to compute the "unique" minimal Sullivan model of X and to compute the rational homotopy groups \pi_*(X)\otimes Q of X via this unique minimal model. Moreover, a one-one correspondence between a category of rational homotopy types and a category of minimal Sullivan algebras is established.

    1 Introduction 1 2 Di fferential Graded Algebra (DGA) 3 3 A_{PL}(X) and its relation with C(X) 5 4 Existence of Sullivan Model and Minimal Sullivan Model 9 5 Uniqueness of Minimal Sullivan Model 14 6 Examples 18 7 Reading \pi_*(X)\otimes Q from its Minimal Sullivan Model 20 8 One-One Correspondence between Rational Homotopy Types and Minimal Sullivan Algebras 25

    [1] G. E. Bredon, Topology and Geometry, Springer, 1993.
    [2] Y. Felix, S. Halperin and J. Thomas, Rational Homotopy Theory, Springer, 2001.
    [3] P. A. Griths and J. W. Morgan, Rational Homotopy Theory and Di erential Forms, Birkhauser, 1981.
    [4] J. J. Rotman, An Introduction to Algebraic Topology,Springer, 1998.
    [5] L. W. Tu, An Introduction to Manifolds, Springer, 2nd edition, 2011.
    [6] Frank W. Warner, Foundations of Di erentiable Manifolds and Lie Groups, Springer, 1983.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE