研究生: |
吳旻駿 Wu, Ming-Chun |
---|---|
論文名稱: |
極小沙利文模型與有理同倫群 Minimal Sullivan Models and Rational Homotopy Groups |
指導教授: | 鄭志豪 |
口試委員: |
鄭志豪
何南國 許義容 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 31 |
中文關鍵詞: | 沙利文模型 、極小沙利文模型 、有理同倫群 、同倫群 、沙利文 |
外文關鍵詞: | Sullivan Model, Minimal Sullivan Model, Rational Homotopy Group, Homotopy Group, Sullivan |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文釐清了如何使用一個單連通空間X的上同調代數計算X的"唯一"的極小沙利文模型進而計算X的有理同倫群。此外,一個在有理同倫型與最小沙利文代數這兩個範疇之間的一一對映被建立了。
This monograph clarfies how to use the cohomology algebra of a simply connected space X to compute the "unique" minimal Sullivan model of X and to compute the rational homotopy groups \pi_*(X)\otimes Q of X via this unique minimal model. Moreover, a one-one correspondence between a category of rational homotopy types and a category of minimal Sullivan algebras is established.
[1] G. E. Bredon, Topology and Geometry, Springer, 1993.
[2] Y. Felix, S. Halperin and J. Thomas, Rational Homotopy Theory, Springer, 2001.
[3] P. A. Griths and J. W. Morgan, Rational Homotopy Theory and Dierential Forms, Birkhauser, 1981.
[4] J. J. Rotman, An Introduction to Algebraic Topology,Springer, 1998.
[5] L. W. Tu, An Introduction to Manifolds, Springer, 2nd edition, 2011.
[6] Frank W. Warner, Foundations of Dierentiable Manifolds and Lie Groups, Springer, 1983.