研究生: |
江長恩 CHIANG, CHANG EN |
---|---|
論文名稱: |
用於可重構單電子電晶體合成之基於線性臨界值邏輯電路的積項演算法 A Linear Threshold Gate-based Approach Computing Product Terms for Reconfigurable Single-Electron Transistor Array Mapping |
指導教授: | 王俊堯 |
口試委員: |
王俊堯
黃婷婷 黃俊達 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | 單電子電晶體 、合成 、線性邏輯電路 、積項 |
外文關鍵詞: | product term |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著低功耗已經成為晶片設計上考量的重要因素之一,有許多低功耗的設備裝置被許多人提出並且探討其中的課題,在眾多低功耗的設備之下,由於單電子電晶體(Single-Electron Transistor)在室溫下的操作過程中的低功耗,這項裝置受到了相當大的關注。時至今日,近期有針對單電子電晶體架構的自動化合成方法被提出以便於設計上的實現。這項自動化合成方法首先利用二元決策圖(Binary Decision Diagram)來計算出設計功能中的乘積項,接著調整這些乘積項合成之順序來最小化單電子電晶體的架構。透過觀察可知乘積項的個數會對合成出來的單電子電晶體的架構產生莫大的影響,有鑒於此,在這篇論文我們提出了線性臨界值邏輯電路(Linear Threshold Logic Circuit)的乘積項演算法並將此演算法整合到之前提出的自動化合成方法來最小化合成後的單電子電晶體之架構。從實驗結果中顯示,相比於目前最新的單電子電晶體自動化合成方法,我們所提出的方法可以大約節省下14%的面積以及16%的寬度。
[1] N. Asahi, M. Akazawa, and Y. Amemiya, Single-Electron Logic Device Based on the Binary Dicision Dia-
gram," IEEE Trans. Electron Devices, vol. 44, pp. 1109-1116. July. 1997.
[2] R. Bryant, Graph-based Algorithms for Boolean Function Manipulation," IEEE Trans. Computers, vol. 35,
pp. 677-691, Aug. 1986.
[3] K. J. Chen, K. Maezawa, and M. Yamamoto, InP-Based High-Performance Monostable-Bistable Transition
Logic Elements (MOBILE's) Using Integrated Multiple-Input Resonant-Tunneling Devices," IEEE Eletron
Device Letters, vol. 17, pp.127-129, March. 1996.
[4] Y. C. Chen, S. Eachempati, C. Y. Wang, S. Datta, Y. Xie, and V. Narayanan, Automated Mapping for
Recongurable Single-Electron Transistor Arrays," in Proc. Design Automation Conf., 2011, pp. 878-883.
[5] Y. C. Chen, S. Eachempati, C. Y. Wang, S. Datta, Y. Xie, and V. Narayanan, A Synthesis Algorithm for Re-
congurable Single-Electron Transistor Arrays," Journal on Emerging Technologies in Computing Systems.,
2012.
[6] M. L. Dertouzos, Threshold Logic: A Synthesis Approach". Cambridge, MA: M.I.T. Press, 1965.
[7] S. Eachempati, V. Saripalli, V. Narayanan, and S. Datta, Recongurable Bdd-based Quantum Circuits," in
Proc. Int. Symp. on Nanoscale Architectures, 2008, pp. 61-67.
[8] T. Gowda and S. Vrudhula, Decomposition Based Approach for Synthesis of Multi-Level Threshold Logic
Circuits," in Proc. Asia and South Pacic Design Automation Conf., 2008, pp. 125-130.
[9] T. Gowda, S. Vrudhula, and G. Konjevod, A Non-ILP Based Threshold Logic Synthesis Methodology," in
Proc. International Workshop on Logic and Synthesis, 2007, pp. 222-229.
[10] T. Gowda, S. Vrudhula, and G. Konjevod, Combinational Equivalence Checking for Threshold Logic Cir-
cuits," in Proc. Great Lake Symp. VLSI, March 2007, pp. 102-107.
[11] P. Gupta, R. Zhang, and N. K. Jha, Automatic Test Generation for Combinational Threshold Logic Net-
works," IEEE Trans. Computer-Aided Design, vol. 16, pp.1035-1045, Aug. 2008.
[12] H. Hasegawa and S. Kasai, Hexagonal Binary Decision Diagram Quantum Logic Circuits Using Schottky
In-Plane and Wrap Gate Control of GaAs and InGaAs Nanowires," Physica E: Low-dimensional Systems
and Nanostructures, vol. 11, pp. 149-154, Oct. 2001.
[13] P. Santosh Kumar Karrea, Paul L. Bergstrom, Govind Mallick, and Shashi P. Karna, Room Temperature
Operational Single Electron Transistor Fabricated by Focused Ion Beam Deposition," Journal of Applied
Physics, vol. 102, 024316, 2007.
[14] S. Kasai, Y. Amemiya, and H. Hasegawa, GaAs Schottky Wrap-Gate Binary-Decision-Diagram Devices
for Realization of Novel Single Electron Logic Architecture," in Proc. IEEE International Electron Devices
Meeting, 2000, pp. 585-588.
[15] S. Kasai, M. Yumoto, and H. Hasegawa, Fabrication of GaAs-based Integrated 2-bit Half and Full Adders by
Novel Hexagonal BDD Quantum Circuit Approach," in Proc. Int. Symp. on Semiconductor Device Research,
2001, pp. 622-625.
[16] P. Y. Kuo, C. Y. Wang, and C. Y. Huang, On Rewiring and Simplication for Canonicity in Threshold
Logic Circuits," in Proc. International Conf. on Computer-Aided Design, 2011, pp. 396-403.
[17] Z. Kohavi, Switching and Finite Automata Theory". New York, NY: McGraw-Hill, 1978.
[18] L. Liu, V. Saripalli, E. Hwang, V. Narayanan, and S. Datta, Multi-Gate Modulation Doped In0.7Ga0.3As
Quantum Well FET for Ultra Low Power Digital Logic," Electro Chemical Society Transactions, vol. 35,
issue 3, pp. 311-317, 2011.
[19] L. Liu, V. Saripalli, E. Hwang, V. Narayanan, and S. Datta, Device Circuit Co-Design Using Classical and
Non-Classical III-V Multi-Gate Quantum-Well FETs (MuQFETs)," in Proc. IEEE International Electron
Devices Meeting, 2011, pp. 83-86.
[20] S. Minato, Finding All Simple Disjunctive Decompositions Using Irredundant Sum-of-Products Forms," in
Proc. International Conf. on Computer-Aided Design, 1998, pp. 111-117.
[21] S. Muroga, Threshold Logic and its Applications". New York, NY: John Wiley, 1971.
[22] H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Carbon Nanotube Single-Electron Transistors
at Room Temperature," Science, vol. 293, pp. 76-79, July. 2001.
[23] V. Saripalli, L. Liu, S. Datta, and V. Narayanan, Energy-Delay Performance of Nanoscale Transistors
Exhibiting Single Electron Behavior and Associated Logic Circuits," Journal of Low Power Electronics,
vol. 6, pp. 415-428, 2010.
[24] Y. Shirator, K. Miura, R. Jia, N. J. Wu, and S. Kasai, Compact Recongurable Binary-Decision-Diagram
Logic Circuit on a GaAs Nanowire Network," Applied Physics Express, pp. 1-3, Nov. 2009.
[25] F. Somenzi, CUDD: CU decision diagram package - release 2.4.2, 2009.
http://vlsi.colorado.edu/fabio/CUDD/
[26] Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, Room Temperature Nanocrystalline Silicon Single-
Electron Transistors," Journal of Applied Physics, vol. 94, pp. 633-637, July. 2003.
[27] L. F. Tang, C. E. Chiang, and C. Y. Wang, An Efficient Enhanced Synthesis Algorithm for Recongurable
Single-Electron Transistor Mapping".
[28] R. O. Winder, Threshold Logic." Ph.D. dissertation, Princeton University, Princeton, NJ, 1962.
[29] S. Yang, Logic Synthesis and Optimization Benchmarks, Version 3.0," Tech. Report, Microelectronics Center
of North Carolina, 1991.
[30] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, Synthesis and Optimization of Threshold Logic Networks
with Application to Nanotechnologies," in Proc. Design Automation Test in Europe Conf., 2004, pp. 904-909.
[31] Y. Zheng, M. S. Hsiao, and C. Huang, SAT-based Equivalence Checking of Threshold Logic Designs for
Nanotechnologies," in Proc. Great Lake Symp. VLSI, May 2008, pp. 225-230.
[32] L. Zhuang, L. Guo, S. Y. Chou, Silicon Single-Electron Quantum-Dot Transistor Switch Operating at Room
Temperature," Applied Physics Letters, vol. 72, pp. 1205-1207, March. 1998.
[33] http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm
[34] http://iwls.org/iwls2005/benchmarks.html