簡易檢索 / 詳目顯示

研究生: 李奕暾
Li, Yi-Tun
論文名稱: 在軟體定義網路下保證速率的多路徑傳送機制
Multipath Transmission Mechanism for Software Defined Networks with Rate Guarantee
指導教授: 高榮駿
Kao, Jung-Chun
口試委員: 趙禧綠
Chao, Hsi-Lu
楊舜仁
Yang, Shun-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 33
中文關鍵詞: 軟體定義網路多路徑傳送多物流網路問題服務品質速路保證
外文關鍵詞: Software Defined Network, Multi-path transmission, Multicommodity Flow Problem, Quality-of-Service, Rate Guarantee
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 軟體定義網路 (Software-defined network, SDN) 是一種新型的網路架構,它得以使網路集中且智能地被控制。 藉由分離控制網路封包的元件與在交換機及路由器 (switches and routers) 中轉傳封包的硬體,控制層得以被程式化,這有助於開發商及管理員更有彈性地管理網路。 網路管理者可以透過北向的API操作控制器 (controller),而控制器可以透過南向的API與交換機及路由器進行溝通。

    現今,由於鏈接容量的限制,在傳統網路中,單一路徑傳送已經無法滿足我們的需求。為了解決這一問題,我們提出在軟體定義網路下的多路徑傳輸。為了保證所有起始點與終點配對的傳送速率,我們將多物網路流問題 (Multicommodity Flow Problem, MCFP) 演算法應用於軟體定義網路,並提出基於SDN的MCFP機制來改善吞吐量 (throughput) 的效能。 在設計中,我們使用一個集中式的SDN控制器來決定多種商品的最佳路徑,並且控制器會將這些路徑規則轉送到這些路徑上。 實驗結果顯示,我們的方法能夠在多條路徑上分配流量,且可以滿足所有配對的速率需求。


    Software defined networking (SDN) is a new network architecture enables the network to be centrally and intelligently controlled. By decoupling control network packet unit from packet forwarding unit in switches/routers, the control plane could be programmable which helps developers and administrators manage the network more flexibly. Network managers could program controller via northbound API, and controllers will communicate to switches and routers via southbound API.

    Nowadays because of the limit of link capacity, single-path transmission used in traditional networks is insufficient. To solve this problem, we address multi-path transmission in software defined networks. To provide rate guarantee for all source-destination pairs, we apply the multicommodity flow problem (MCFP) algorithm to SDN and propose SDN-based MCFP scheme to improve throughput performance. In this design, a centralized SDN controller could decide optimal paths for multiple commodities and the controller would sending the flow rules to them. Simulation results show that our method which is able to distribute flows over multiple paths can meet the rate-demand for all source-destination pairs.

    Acknowledgements I Abstract II Abstract (Chinese) III Contents IV List of Figures VI List of Tables VII List of Algorithms VIII 1 Introduction 1 1.1 Software Defined Network . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Multicommodity Flow Problem . . . . . . . . . . . . . . . . . . . . 2 2 Related Work 5 2.1 Software-Defined Network . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Multiple-Path Transmission . . . . . . . . . . . . . . . . . . . . . . 6 2.3 The Choices of SDN Controller . . . . . . . . . . . . . . . . . . . . 7 3 System Model 9 4 Proposed Method 11 4.1 MCFP Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Flow Installing Module . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.1 Group Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4.2.2 Egress Policing . . . . . . . . . . . . . . . . . . . . . . . . . 14 5 Experimental Evaluation 17 5.1 Experiment Environment . . . . . . . . . . . . . . . . . . . . . . . . 17 5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6 Conclusion 30 Bibliography 31

    [1] Iperf3. https://iperf.fr/iperf-download.php.
    [2] Mininet. http://mininet.org/.
    [3] Netconf. https://tools.ietf.org/wg/netconf/.
    [4] NOX/POX. https://github.com/noxrepo.
    [5] ONOS. https://opennetworking.org/onos/.
    [6] OpenDaylight. https://www.opendaylight.org/.
    [7] OpenFlow Switch Specification Ver. 1.3.0. https://opennetworking.org/wpcontent/uploads/2014/10/openflow-spec-v1.3.0.pdf.
    [8] Ryu. https://github.com/faucetsdn/ryu.
    [9] Wireshark. https://www.wireshark.org/.
    [10] Mark Fedor, Martin Lee Schoffstall, James R. Davin, and Dr. Jeff D. Case. Simple Network Management Protocol (SNMP). RFC 1157, May 1990.
    [11] Lisa K Fleischer. Approximating fractional multicommodity flow independent
    of the number of commodities. SIAM Journal on Discrete Mathematics,
    13(4):505–520, 2000.
    [12] Mordechai I. Henig. The shortest path problem with two objective functions. European Journal of Operational Research, 25(2):281–291, 1986.
    [13] Chih-Lin Hu. Improving multipath tcp routing performance in softwaredefined networks. https://hdl.handle.net/11296/44tja6, 2020.
    [14] Xiangshan Sun, Zhiping Jia, Mengying Zhao, and Zhiyong Zhang. Multipath load balancing in sdn/ospf hybrid network. In IFIP International Conference on Network and Parallel Computing, pages 93–100. Springer, 2016.
    [15] Phyo May Thet, Parichat Panwaree, JongWon Kim, and Chaodit Aswakul. Design and functionality test of chunked video streaming over emulated multipath openflow network. In 2015 12th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), pages 1–6. IEEE, 2015.
    [16] George Tsaggouris and Christos Zaroliagis. Qos-aware multicommodity flows and transportation planning. In 6th Workshop on Algorithmic Methods and Models for Optimization of Railways (ATMOS’06). Schloss Dagstuhl-Leibniz-Zentrum f¨ur Informatik, 2006.
    [17] Cheng-Ying Wu. Balanced service chaining with traffic steering
    in software defined networks with network function virtualization.
    https://hdl.handle.net/11296/9pf84q, 2015.

    QR CODE