簡易檢索 / 詳目顯示

研究生: 張柏陽
Chang, Po Yang
論文名稱: 蒸氣凝結氣膠微粒收集器之效能評估與研發
Development and Performance Characterization of a Steam-based Aerosol Collector
指導教授: 王竹方
Wang, Chu Fang
口試委員: 蕭大智
吳章甫
白光宇
Guenter Engling
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2015
畢業學年度: 104
語文別: 英文
論文頁數: 44
中文關鍵詞: 顆粒性物質微粒長大微粒收集效率蒸氣凝結氣膠微粒收集器
外文關鍵詞: Particulate matter, Particle growth, Particle collection efficiency, Steam-based aerosol collector
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究主要在評估一套具有高時間解析度的蒸氣凝結氣膠微粒收集器,並可以串接水相的化學分析儀器。此收集器可區分成以下幾個部分: 混合腔、蒸汽產生器、冷卻系統、慣性衝擊板以及幫浦。當顆粒性物質進入混合腔時,蒸氣與氣流方向平行,顆粒會開始與蒸氣進行混和,此時蒸氣將會附著於顆粒表面以增加顆粒的大小,以便後端慣性衝擊板收集。冷卻系統維持混合腔體的溫度維在20度C左右,以確保腔體內部具有較高的相對濕度以利於蒸氣冷凝於顆粒表面。此蒸氣凝結氣膠微粒收集器可操作在每分鐘5.0到16.7公升的流量範圍內,依照不同的採樣流速,顆粒於混合腔體內部停留時間為1.23秒到4.11秒。為了去評斷此台蒸氣凝結氣膠微粒收集器之效能,設計了一系列的實驗,藉由流量與顆粒大小等參數對其的性能作系統性的量測。首先針對慣性衝擊板對不同粒徑及流量做測試,而得到在每分鐘5.0、10.0以及16.7公升的流量下,慣性收集板所能收到的最小粒徑,此時如將氣動粒徑轉換成史托克數可以預測在此流量範圍內的所對應的流量的最小收集粒徑。第二部分是在量測不同的顆粒大小及流量,經過混合腔體後,顆粒長大的程度,數據顯示,大部分32.2-194.0 奈米的微粒均可長至 2-13微米左右。第三部分探討不同粒徑及流量下,顆粒的收集效率,在每分鐘5.0-16.7公升的流量範圍下,89.8-300.0奈米的微粒回收效率都接近百分之百。最後,將此蒸氣凝結氣膠微粒收集器串接狹縫虛擬衝擊器對周遭的空氣濃度利用慣性的方式做濃縮,得到的實驗濃縮效率大概為3到4倍左右。


    In this study, a homemade steam-based aerosol collector with high time resolution is developed and discussed here in detail. This steam-based aerosol collector can be coupled with water-phase chemical analytical instruments and divided into a few separate parts, including a mixing chamber, steam generator, cooling system, inertial impactor, and vacuum pump. The particulate matter drawn into the system mixes with steam in parallel direction and forms droplets due to the water supersaturation in the mixing chamber. The cooling system maintaining the temperature around 20 °C enhances the steam condensation on the particle surface. In this study, the aerosol collector is operated in the flow rate range from 5.0 to 16.7 L min-1, and the residence time of droplets inside of the mixing chamber is from 1.23 to 4.11 seconds. For evaluating the performance of the collector, the following experiments were conducted. Firstly, the cut size of the inertial impactor was characterized by penetration experiments at 5.0, 10.0, and 16.7 L min-1. The penetration curves with the Stokes number as x-axis can be established to predict the cut size. Secondly, the sizes of particles from 32.2-194.0 nm are enlarged up to the cut size of the inertial impactor at 5.0 to 16.7 L min-1. Thirdly, the particle collection efficiencies were almost 100% at the sizes of test particles from 89.8 to 300.0 nm in 5.0, 10.0, and 16.7 L min-1. Finally, this steam-based aerosol collector with the slit virtual impactor can concentrate the air mass concentration by the inertial motion of particles. The concentrated ratio was around 3 to 4 times based on the experiments.

    Chapter 1: Introduction 1 Chapter 2: Experimental methods 8 2.1 Methods descriptions 8 2.1.1 Steam-based aerosol collector system 8 2.1.2 Ion species analysis 9 2.1.3 Scanning mobility particle sizer 10 2.1.4 Aerodynamic particle sizer 11 2.2 Experimental system setup 11 2.2.1 Performance of impactor test 11 2.2.2 Particle growth 12 2.2.3 Particle collection efficiency 13 2.2.4 The concentrated ratio test 15 Chapter 3: Results and Discussion 18 3.1 The performance of impactor 18 3.2 Particle growth 20 3.3 Particle collection efficiency 27 3.3.1 Influence of concentration 27 3.3.2 Influence of particle size 30 3.4 The concentrated ratio test 37 Chapter 4: Conclusions 39 Chapter 5: Reference 41

    Andreae, M. O. and P. J. Crutzen (1997). "Atmospheric aerosols: Biogeochemical sources and role in atmospheric chemistry." Science 276(5315): 1052-1058.

    Buhr, S. M., et al. (1995). "Development of a semi-continuous method for the measurement of nitric acid vapor and particulate nitrate and sulfate." Atmospheric Environment 29(19): 2609-2624.

    Chang, P. K. (2015). "A CFD Study of Effects of Flow and Geometrical Parameters on Slit Virtual Impactor Performance." Master's thesis.

    Dockery, D. W. and C. A. Pope (1994). "Acute Respiratory Effects of Particulate Air-Pollution." Annual Review of Public Health 15: 107-132.

    Drewnick, F., et al. (2003). "Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments." Atmospheric Environment 37(24): 3335-3350.

    Hayes, P. L., et al. (2013). "Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign." Journal of Geophysical Research-Atmospheres 118(16): 9233-9257.

    Hong, S.-B., et al. (2009). "Development of Semicontinuous Measurement System of Ionic Species in PM2. 5." Bulletin of the Korean Chemical Society 30(7): 1505-1515.

    Jacob, D. (1999). Introduction to atmospheric chemistry, Princeton University Press.

    Khlystov, A., et al. (1995). "The steam-jet aerosol collector." Atmospheric Environment 29(17): 2229-2234.

    Kuokka, S., et al. (2007). "Using a moving measurement platform for determining the chemical composition of atmospheric aerosols between Moscow and Vladivostok." Atmospheric Chemistry and Physics 7(18): 4793-4805.

    Neusüß, C., et al. (2000). "Size‐segregated chemical, gravimetric and number distribution‐derived mass closure of the aerosol in Sagres, Portugal during ACE‐2." Tellus B 52(2): 169-184.

    Orsini, D. A., et al. (2003). "Refinements to the particle-into-liquid sampler (PILS) for ground and airborne measurements of water soluble aerosol composition." Atmospheric Environment 37(9): 1243-1259.

    Parshintsev, J., et al. (2009). "Analysis of organic compounds in ambient aerosols collected with the particle-into-liquid sampler." Boreal Environment Research 14(4): 630-640.

    Perrino, C., et al. (2010). "Time-resolved measurements of water-soluble ions and elements in atmospheric particulate matter for the characterization of local and long-range transport events." Chemosphere 80(11): 1291-1300.

    Perrino, C., et al. (2014). "Seasonal variations in the chemical composition of particulate matter: a case study in the Po Valley. Part I: macro-components and mass closure." Environmental Science and Pollution Research 21(6): 3999-4009.

    Perrino, C., et al. (2015). "Improved Time-Resolved Measurements of Inorganic Ions in Particulate Matter by PILS-IC Integrated with a Sample Pre-Concentration System." Aerosol Science and Technology 49(7): 521-530.

    Pitts, B. F. and J. Pitts (2000). Chemistry of the upper and lower atmosphere: Theory, experiments and applications, Academic Press New York.

    Saarnio, K., et al. (2013). "Online determination of levoglucosan in ambient aerosols with particle-into-liquid sampler - high-performance anion-exchange chromatography - mass spectrometry (PILS-HPAEC-MS)." Atmospheric Measurement Techniques 6(10): 2839-2849.

    Seinfeld, J. H., et al. (2004). "ACE-ASIA - Regional climatic and atmospheric chemical effects of Asian dust and pollution." Bulletin of the American Meteorological Society 85(3): 367-+.

    Simon, P. K. and P. K. Dasgupta (1995). "Continuous automated measurement of gaseous nitrous and nitric acids and particulate nitrite and nitrate." Environmental science & technology 29(6): 1534-1541.

    Simon, P. K. and P. K. Dasgupta (1995). "Continuous Automated Measurement of the Soluble Fraction of Atmospheric Particulate Matter." Analytical chemistry 67(1): 71-78.

    Slanina, J., et al. (2001). "The continuous analysis of nitrate and ammonium in aerosols by the steam jet aerosol collector (SJAC): extension and validation of the methodology." Atmospheric Environment 35(13): 2319-2330.

    Sorooshian, A., et al. (2006). "Modeling and characterization of a particle-into-liquid sampler (PILS)." Aerosol Science and Technology 40(6): 396-409.

    Stelson, A. W. (1990). "Urban Aerosol Refractive-Index Prediction by Partial Molar Refraction Approach." Environmental science & technology 24(11): 1676-1679.

    Sullivan, A. P., et al. (2006). "Airborne measurements of carbonaceous aerosol soluble in water over northeastern United States: Method development and an investigation into water-soluble organic carbon sources." Journal of Geophysical Research-Atmospheres 111(D23).

    Timonen, H., et al. (2010). "High time-resolution chemical characterization of the water-soluble fraction of ambient aerosols with PILS-TOC-IC and AMS." Atmospheric Measurement Techniques 3(4): 1063-1074.

    Wang, D. B., et al. (2013). "Development and Evaluation of a High-Volume Aerosol-into-Liquid Collector for Fine and Ultrafine Particulate Matter." Aerosol Science and Technology 47(11): 1226-1238.

    Watson, J. G. (2002). "Visibility: Science and regulation." Journal of the Air & Waste Management Association 52(6): 628-713.

    Weber, R., et al. (2001). "A particle-into-liquid collector for rapid measurement of aerosol bulk chemical composition." Aerosol Science & Technology 35(3): 718-727.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE