簡易檢索 / 詳目顯示

研究生: 胡凌彰
Ling-Chang Hu
論文名稱: 一百奈米以下跨立閘結構金氧半場效電晶體之設計與研究
Design of Straddle-Gate Structure for Sub-100nm MOS Transistors
指導教授: 金雅琴
Ya-Chin King
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 64
中文關鍵詞: 跨立閘金氧半場效電晶體一百奈米
外文關鍵詞: Straddle-Gate, Sub-100nm, MOS
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在元件縮小的同時,有許多的挑戰必須要被克服。近年來,許多新結構的電晶體以及新的製程技術因此而被廣泛地研究。為了解決源極/汲極延伸區域高濃度與淺接面的不易達成,跨立閘結構金氧半場校電晶體因而被發展出來。跨立閘電晶體移除了傳統元件中源極/汲極延伸區域,而以反轉區來取代之,藉此避免源極/汲極延伸區域在製程上的困難。論文中將闡述此跨立閘電晶體的發展緣由、基本操作特性,並一一地討論各項元件操作之表現,期使能夠從中探討出跨立閘電晶體之最佳化設計,促使跨立閘電晶體日後能夠真正成為元件縮小的另一個有效的、可行的途徑。
    近年來,半導體產業蓬勃發展,積體電路如今已發展到超大型積體電路﹙Ultra Large Scale Integrated Circuit,ULSI﹚的領域。為了追求更高密度、高速度以及低功率消耗的積體電路,金屬氧化物半導體﹙Metal-Oxide- Semiconductor,MOS﹚元件必須不斷的縮小。依照莫爾定律﹙Moore's Law﹚

    ,金氧半元件的大小每一個世代會比前一個世代縮小0.7倍,每隔三年就會進入下一個世代[1]。由早期到現在,金氧半元件各項參數的發展趨勢都完全受到這個定律所支配,諸如通道長度、閘極介電層厚度、源極/汲極接面深度、閘極延遲時間等等。

    然而,儘管製程技術不斷地進步,當金氧半元件發展到一百奈米以下的世代時,仍有幾項重大的瓶頸有待克服[2]。這些問題當中,包括有閘氧化層穿透電流增加使得靜態功率增加與可靠性降低、源極/汲極延伸區域(Source/Drain Extension Region)的高濃度與淺接面在製程上的不易達成、通道中不規則的參雜導致臨界電壓產生很大的變化等等。為了解決以上幾項問題,S. Tiwari 等人在1998年發表了新結構的跨立閘電晶體 (Straddle-Gate Transistor),藉此提供今後元件繼續縮小的另一個有效可行的途徑[3][4]。

    跨立閘結構電晶體與傳統金氧半元件不同之處,在於其側壁下方通道的臨界電壓較電晶體控制區域的臨界電壓為低,這個區域會在電晶體導通之前先打開,並在電晶體完全導通後,提供電晶體正常的電流傳導。在跨立閘電晶體的設計概念提出之後,相關的研究並不多,它的各項元件特性以及類似結構尚未受到較為完整的討論。因此,在本篇論文中,除了針對跨立閘電晶體的各項元件特性做深入探討之外,同時也會將與跨立閘電晶體具有相同設計概念的未蝕刻閘電晶體 (Unetched-Gate Transistor)、雙材料閘電晶體 (Dual-Material Gate Transistor, DMG) 提出來做討論。

    在本篇論文中,第二章將介紹元件縮小所遭遇的挑戰、跨立閘電晶體之發展過程與未來的發展趨勢。第三章將簡單介紹本文中所採用之模擬軟體,並說明跨立閘電晶體的元件結構與操作原理。第四章則對研究結果加以整理討論,除了比較跨立閘電晶體與傳統控制元件的基本元件特性之外,同時並討論改變元件結構參數後,元件特性所受的影響,最後則探討結合SOI之跨立閘電晶體元件特性。第五章則是本論文的結論。


    As device scales down, some constraints must be overcome. Straddle-gate transistor is not limited by the source/drain extension region and leads another path to smaller devices. A comprehensive investigation of the transistor characteristics of Straddle-gate structure is presented in this work, which allows a better understanding and optimization of the straddle-gate transistors. Using the careful analysis of these characteristics, sub-100nm length straddle-gate transistors can be optimized with various structure variables, such as spacer width and side dielectric thickness. The straddle-gate transistor is shown to exert much better control on the channel than the control device with the same effective channel length, which leads to a significant improvement in off current characteristics.

    目 錄 摘要........................................................................................................Ⅱ 英文摘要................................................................................................Ⅲ 誌謝........................................................................................................Ⅳ 目錄........................................................................................................Ⅴ 附圖目錄................................................................................................Ⅶ 附表目錄................................................................................................Ⅹ 第一章 緒 論..........................................................................................1 第二章 發展與回顧.................................................................................3 2.1 元件縮小所遭遇之挑戰................................................................3 2.1.1 閘氧化層厚度縮小之限制...................................................3 2.1.2 源極汲極延伸區域的高濃度與淺接面的不易達成...........4 2.1.3 通道中不規則的參雜導致臨界電壓產生變化...................4 2.2 跨立閘電晶體之發展過程............................................................5 2.3 跨立閘電晶體未來之發展趨勢....................................................6 第三章 模擬工具、元件結構與工作原理...........................................13 3.1 元件製程及電性模擬軟體..........................................................13 3.2 元件結構......................................................................................13 3.3 元件之操作原理..........................................................................15 第四章 電性模擬結果之分析與討論...................................................20 4.1 跨立閘電晶體與控制元件的短通道效應之比較......................20 4.2 跨立閘電晶體與控制元件的基本特性之比較..........................21 4.3 改善跨立閘電晶體元件特性之研究..........................................22 4.3.1 跨立閘氧化層厚度對元件特性之影響.............................22 4.3.2 側壁寬度對元件特性之影響.............................................23 4.3.3負載電容對元件操作速度之影響......................................23 4.4 改善單側跨立閘結構跨立閘電晶體元件特性之研究..............25 4.5 改善SOI結構跨立閘電晶體元件特性之研究............................26 4.5.1 SOI結構之控制元件...........................................................26 4.5.2 側壁氧化層厚度與側壁寬度對元件操作速度之影響.....27 第五章 結論...........................................................................................61

    [1] P.K.Bondyopadhyay, "Moore's Law Governs the Silicon Revolution", Proceedings of IEEE, vol.86, no.1, pp.78-81, 1998
    [2] T.Ghani, K.Mistry, P.Packan, S.Thompson, M.Stettler, S.Tyagi, and M.Bohr, "Scaling Challenges and Device Design Requirements for High Performance Sub-50 nm Gate Length Planar CMOS Transistors", Symp. VLSI Tech. Dig., pp. 174-175, 2000
    [3] S.Tiwari, J.J.Welser, and P.M.Solomon, "Straddle-Gate Transistor: Changing MOSFET Channel Length Between Off- and On-State Towards Achieving Tunneling-Defined Limit of Field-Effect", Tech. Dig. of IEDM, pp.737-740, 1998
    [4] S.Tiwari, J.J.Welser, A.Kumar, and S.Cohen, "Straddle Gate Transistors: High Ion/Ioff Transistors at Short Gate Lengths", Device Research Conference Dig., pp.26-27, 1999
    [5] A.Hiroki, S.Odanaka, A.Hori, "A High Performance 0.1 /spl mu/m MOSFET with Asymmetric Channel Profile", IEDM, pp.439-442, 1995
    [6] W.Long, H.Ou, J.M.Kuo, and K.K.Chin, "Dual-Material Gate (DMG) Field Effect Transistor", IEEE Trans. Electron Device, vol.46, pp.865-870, 1999
    [7] W.Long, and K.K.Chin, "Dual Material Gate Field Effect Transistor (DMGFET)", Tech. Dig. of IEDM, pp.549-552, 1997
    [8] X.Zhou, and W.Long, "A Novel Hetero-Material Gate (HMG) MOSFET for Deep-Submicron ULSI Technology", IEEE Trans. Electron Device, vol.45, pp.2546-2548, 1998
    [9] A.Asenov, S.Saini, "Suppression of Random Dopant-Induced Threshold Voltage Fluctuations in Sub-0.1-/spl mu/m MOSFET's with Epitaxial and /spl delta/-Doped Channels", IEEE Trans. Electron Device, vol.46, pp.1718-1724, 1999
    [10] Bin Yu, D.H.Ju, N.Kepler, T.J.King, Chenming Hu, "Gate Engineering For Performance And Reliability In Deep-Submicron CMOS Technology", VLSI Tech. Dig., pp. 105-106, 1997
    [11] Bin Yu, D.H.Ju, W.C.Lee, N.Kepler, T.J.King, Chenming Hu, "Gate Engineering for Deep-Submicron CMOS Transistors", IEEE Trans. Electron Device, vol.45, pp.1253-1262, 1998
    [12] Bin Yu, C.H.J. Wann, E.D. Nowak, K. Noda, Chenming Hu, "Short-Channel Effect Improved by Lateral Channel-Engineering in Deep-Submicronmeter MOSFET's", IEEE Trans. Electron Device, vol.44, pp.627-634, 1997
    [13] H.S. Momose, M.Ono, T. Yoshitomi, T. Ohguro, S. Nakamura, M. Saito, H. Iwai, "Tunneling Gate Oxide Approach to Ultra-High Current Drive in Small Geometry MOSFETs", IEDM, pp.593-596, 1994
    [14] M.S.Krishnan, L.Cheng, T.J.King, J.Bokor, Chenming Hu, "MOSFETs with 9 to 13 A Thick Gate Oxides", IEDM, pp.241-244, 1999
    [15] S.Tiwari, J.J.Welser, D.J.DiMaria, F.Rana, "Currents, Surface Potentials, and Defect Generation in 1.2-1.5 nm Oxide MOSFETs", Device Research Conference Dig., pp.12-13, 1998
    [16] Stanley Wolf, Silicon Processing for the VLSI Era Volume 3:Process Integration, Lattice Press, 1995
    [17] S.H.Lo, D.A.Buchanan, Y.Taur, W.Wang, "Quantum-Mechanical Modeling of Electron Tunneling Current from The Inversion Layer of Ultra-Thin-Oxide nMOSFET's", IEEE Electron Device Lett., Vol.18, pp.209-211, 1997
    [18] S.Thompson, P.Packan, T.Ghani, M.Stettler, M.Alavi, I.Post, S.Tyagi, S.Ahmed, S.Yang, M.Bohr, "Source/Drain Extension Scaling for 0.1 /spl mu/m and below Channel Length MOSFETs", VLSI Tech. Dig., pp. 132-133, 1998
    [19] A.Nishida, E.Murakami, S.Kimura, "Characteristics of Low-Energy BF/sub 2/- or As-Implanted Layers and Their Effect on the Electrical Performance of 0.15-/spl mu/m MOSFET's", IEEE Trans. Electron Device, vol.45, pp.701-709, 1998
    [20] R.W.Keyes, Proc. IEEE, vol.63, p.740, 1975
    [21] K.Nishinohara, N.Shigyo, T.Wada, "Effects of Microscopic Fluctuations in Dopant Distributions on MOSFET Threshold Voltage", IEEE Trans. Electron Device, vol.39, pp.634-639, 1992
    [22] T.Mizuno, J.Okumtura, A.Toriumi, "Experimental Study Of Threshold Voltage Fluctuations Using An 8k MOSFET's Array", Symp. VLSI Tech. Dig., pp. 41-42, 1993
    [23] T.Mizuno, J.Okumtura, A.Toriumi, "Experimental Study of Threshold Voltage Fluctuation Due to Statistical Variation of Channel Dopant Number in MOSFET's", IEEE Trans. Electron Device, vol.41, pp.2216-2221, 1994
    [24] K.Chen, C.Hu, P.Fang, M.R.Lin, D.L.Wollesen, "Predicting CMOS Speed with Gate Oxide and Voltage Scaling and Interconnect Loading Effects", IEEE Trans. Electron Device, vol.44, pp.1951-1957, 1997
    [25] K.Chen, C.Hu, P.Fang, M.R.Lin, D.L.Wollesen, "Optimizing Quarter and Sub-Quarter Micron CMOS Circuit Speed Considering Interconnect Loading Effects", IEEE Trans. Electron Device, vol.44, pp.1556-1558, 1997
    [26] K.Chen, C.Hu, P.Fang, A.Gupta, M.R.Lin, D.L.Wollesen, "Accurate Models for CMOS Scaling and Gate Delay in Deep Sub-Micreon Rgime", Simulation of Semiconductor Processes and Devices, pp.261-264, 1997

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE