研究生: |
王文賢 |
---|---|
論文名稱: |
一階熱釋放化學反應模型之平衡解探討 Numerical Investigation for the Equilibrium Solutions of A first-order Exothermic Chemical Reaction Model |
指導教授: | 簡國清 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
中文關鍵詞: | 平衡解 、牛頓迭代法 、隱函數定理 、虛擬弧長延拓法 、局部延拓法 、割線預測法 |
外文關鍵詞: | Equilibrium solutions, Newton iterative method, Implicit function theorem, Pseudo-arclength continuation algorithm, Local continuation method, Secant predictor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文,旨在探討一階熱釋放化學反應模型平衡解之解情形。我們使用的工具是牛頓迭代法、隱含數定理、局部延拓法、割線預測法及虛擬弧長延拓法,來找出我們的一階熱釋放化學反應平衡解在各參數的有限範圍內之解路徑情形,並探討改變各種參數,其多重路徑解所產生的變化,並找出其所有的轉彎點
The purpose of this paper is to investigate the equilibrium solutions of a first-order exothermic chemical reaction model. The main theories we used are Newton iterative method, Implicit Function Theorem, local continuation method, Secant Predictor and Pesudo-arclength continuation algorithm to find out the multiple solutions within limited range of parameters. Therefore we can investigate and change various parameters to gain different solutions. Finally we will determine all the turning points.
參 考 文 獻
[1] Allgower E.L. and Chien C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Compute , 7, 1265-1281 , 1986.
[2] Atkinson, K.E., The numerical solution of bifurcation problems' SIAM J. Numer, Anal., 14(4), 584-599 , 1977.
[4] Brezzi, F. ,Rappaz, J. and Raviart, P.A., Finite dimensional approximation of a bifurcation problems, Numer.Math., 36,1-25 , 1980.
[5] Crandall, M.G. and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8,321-340 , 1971.
[7] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series , 1979.
[8] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York, 1-35 , 1977.
[11] Jepson A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell , 1987.
[12] Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for non-linear bifurcation problems, Arch. Rational Mech. Anal., 48, 83-108 , 1972.
[13] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384 , 1977.
[14] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag , 1987.
[16] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York. 1983.
[18] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp. 221 – 237 , 1980.
[19] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York),
[22] Wacker, H.(ed-), Continuation Methods, Academic Press, New York , 1978.