研究生: |
林威成 Lin, Wei-Cheng |
---|---|
論文名稱: |
標準SiGe BiCMOS製程中光偵測器結構之研究 Study of the Photodetector Structures in Standard SiGe BiCMOS Technology |
指導教授: |
徐永珍
Hsu, Yung-Jane |
口試委員: |
蔡哲正
江雨龍 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 光偵測器 |
外文關鍵詞: | SiGe BiCMOS |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用SiGe 異質接面的材料特性,實現一高光響應度之光偵測器(Photodetector,PD),並利用不同結構來達到光響度度峰值的偏移。同時利用光電晶體放大特性,將原有接收到的光電流作訊號的放大。設計過程中,考量可運用之感光面積,在有限的設計規則檢查(Design rule check,DRC)之下,達到最佳的利用。
利用淺層之光偵測器結構有效達到光響應度峰值之偏移, 而深層之光偵測器配合光電晶體的放大,有效將光響應度整個抬升,使得整體光響應度絕對值比一般結構之光偵測器要來的高。面積小且高光響應度之光偵測器, 適用於影像感測器等考量面積因素之應用上。
High photoresponsivity photodetectors (PD) are implemented in standard SiGe BiCMOS technology in this work. Different PD structures are attempted to achieve peak shift of responsivity. Phototransistors that can amplify photo current are also investigated. The challenge in the design process, lies on optimizing the sensing area under the DRC limitation of the standard technology.
Each phtodetector fabricated in TSMC 0.35um SiGe BiCMOS technology has an area of 30um x 30um.
PD structures with shallow junctions are attempted to achieve blue-shift of responsivity peak. By using the current amplification capability, phototransistors with deep junctions achieve good photoresponsivity higher than that of normal PD structures. These photodetectors have small area and high photoresponsivity and can be applied to image sensor applications.
[1] 吳昭羲, “平臺式矽鍺異質接面雙載子電晶體研製與分析” 國立中央大學, 電機工程研究所, 碩士論文, 中華民國九十四年六月
[2] Jiann S. Yuan, “SiGe, GaAs, and InP Heterojunction Bipolar Transistors.”, John Wiley and Sons, Inc. 1999
[3] Peter Ashburn, “SiGe Heterojunction Bipolar Transistors.”, John Wiley and Sons, Inc. 2003.
[4] 賴宇紳, “Analysis and Design of High Photoresponsivity Phototransistor Photodetector (PTPD) in Standard 0.35 μm SiGe BiCMOS Technology” 國立清華大學, 電子工程研究所, 博士論文, 中華民國九十七年六月
[5] 張晏誠, “應用於高動態影像範圍之新型影像感測陣列電路設計”國立清華大學, 電子工程研究所, 碩士論文, 中華民國九十八年七月
[6] S. M. Sze, “Semiconductor Device Physics and Technology”, John Wiley & Sons Inc., 2nd & 3rd
[7] http://www.osioptoelectronics.com/
[8] D. Todorova, N. Mathur and K.P. Roenker, “Simulation and Design of SiGe HBTs for Power Amplification at 10GHZ”, Semiconductor Device Research Symposium, December 2001, pp. 248-251.
[9] Vivek Pant and Viraj Pandit , “Low Injection Base Current Model for SiGe HBTs in E-B Depletion Region”, IEEE Electron Devices and Solid-State Circuits, December 2005, pp. 401-404.
[10] J.M.C. Stork, “SiGe Heterojunction Bipolar Transistors: The First Ten Years”, Solid State Device Research Conference, September 1995, pp. 359-362.
[11] Tsu-Jae King, James P. McVittie, Krishna C. and James R. Pfiester, “Electrical Properties of Heavily Doped Polycrystalline Silicon-Germanium Films”, IEEE Transactions On Electron Devices, VOL. 41, NO. 2, February 1994, pp. 228-232
[12] S.C. Jain, J. Poortmans, S. S. Iyer, J. J. Loferski, J. Nijs, R. Mertens, and R. Van Overstraeten, “Electrical and Optical Bandgaps of 〖Ge_X Si〗_(1-X) Strained Layers”, IEEE Transactions On Electron Devices, VOL. 40, NO. 12, December 1993, pp2338-2342
[13] Jasprit Singh, “Semiconductor Optoelectronics Physics and Technology”,Ch.6
Semiconductor junction theory, p. 286.
[14] S. R. Forrest, R. F. Leheny, R. E. Nahory, M. A. Pollack, “In0.53Ga0.47As
Photodiode With Dark Current Limited by Generation-Recombination And
tunneling”, Appl. Phys. Lett., Vol. 37, No. 3, 1 August, 1981, p. 217.
[15] Mitsuo Fukuda, “Optical Semiconductor Devices.”, John Wiley and Sons, Inc. 1999.
[16] 蔡文洲, “矽鍺異質源/汲極結構與pn二極體之研製”, 國立中央大學, 電機工程研究所, 碩士論文, 中華民國九十三年七月.
[17http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiGe/bandstr.html