簡易檢索 / 詳目顯示

研究生: 王瀚毅
Wang, Han-Yi
論文名稱: 可溶型聚亞醯胺薄膜成膜、剝膜與延伸行為之研究
Film-Forming, Peeling and Stretching of Soluble Polyimides
指導教授: 劉大佼
Liu, Ta-Jo
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 203
中文關鍵詞: 可溶性聚亞醯胺薄膜乾燥揮發剝膜操作視窗黏滑效應之條紋缺陷脆性斷膜單軸延伸雙折射率楊氏係數熱膨脹係數
外文關鍵詞: soluble polyimide film, drying, evaporating, peeling, operating window, stick-slip striation defect, brittle film, uni-axial stretching, birefringence, Young’s modulus, coefficient of thermal expansion
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要討論以溶液鑄膜法製作可溶性聚亞醯胺薄膜之兩個技術關鍵,分別為一、薄膜剝離之相關問題;二、以延伸製程調控以熱膨脹係數為主之薄膜物性。在建立完整之理論分析工具之前,首先必須先進行對塗液出模口至乾燥前的揮發與烘箱內乾燥情況之分析,以完成兩大部分之前置預測理論模型。
    本研究首先成功建立一維乾燥模型,可預測可溶性聚亞醯胺與N-甲基□咯酮塗液出模具口之雙面揮發情況與塗膜在烘箱內之乾燥行為,並與乾燥實驗做比較,以確認理論工具之準確性。對於可溶性聚亞醯胺薄膜的關鍵製程技術,本研究主要探討的兩部分內容簡介如下:
    一、分析解決剝膜之技術問題
      本部分研究目的為分析並解決聚亞醯胺成膜與剝膜的相關問題,以可溶型聚亞醯胺和其溶劑N-甲基□咯酮於鋼板基材為研究系統。由於塗佈於鋼板的聚亞醯胺濕膜在高溫下乾燥會有大量溶劑揮發擴散,造成乾燥缺陷進而影響剝膜製程,所以本研究於分析剝膜程序之前首先必須確定薄膜無乾燥缺陷,並依此建立薄膜厚度對乾燥溫度之操作視窗。隨後本研究以實驗分析來建構剝膜操作視窗,並建立理論模型工具與實驗結果相驗證。
    剝膜操作視窗定義為可穩定且無剝膜缺陷之剝膜操作範圍。剝膜操作視窗之邊界為兩大剝膜缺陷所限:一為在高剝膜拉力下會產生脆性斷膜缺陷;二為於低剝膜拉力下則造成剝膜於鋼板基材界面產生條紋狀之黏滑剝膜缺陷。此外當溶劑殘存量低於某一臨界值時,聚亞醯胺薄膜與鋼板基材之接著性過強,使其無法順利自鋼板基材剝離。在理論工具方面,本研究參考先前文獻有關剝膜及對缺陷的預測,並加以修改延伸以符合本研究系統。
    二、以延伸製程調控以熱膨脹係數為主之薄膜物性
    本部分研究目的是首先以實驗確立適當之延伸範圍再於此範圍進行分析。本研究並建立理論模型預測各物性,再與實驗量測的結果相比較。
    本研究發現聚亞醯胺高分子薄膜存在一延伸操作視窗,其界線分別由延伸溫度和延伸倍率所界定。延伸溫度上下限分別為再結晶溫度與玻璃轉化溫度;延伸倍率上下限為薄膜表面不平整性與頸縮現象。在建立完延伸操作視窗後,可在視窗內進行延伸製程對薄膜物性之探討,並建構延伸後的薄膜雙折射,二維楊氏係數與熱膨脹係數的理論分析工具。由於高分子薄膜物性與膜內分子排列度有高度相關,本研究可使用偏光顯微鏡偵測各延伸條件下薄膜綜觀分子排列度(fibrils structure)以解釋各薄膜物性經延伸之現象。


    The objective of this thesis is the investigation of drying, peeling and stretching of recyclable polyimide films. There are two important parts of this research; peeling of the polyimide film without defect and is how to control the coefficient of thermal expansion (CTE) by the stretching process. Understanding of formation, evaporation and drying of polyimide film is necessary before analyzing the two important issues.
    A dimensional drying model was developed successfully to predict the residual solvent content and drying time during solvent evaporation and drying of polyimide film.
    The peeling behavior of polyimide film coated on steel substrates was experimentally investigated and compared with existing models. An operating window for peeling, which is defined as a closed domain for steady and defect-free peeling, is presented in terms of peeling force vs. residual solvent content. The window is bounded by two major defects: the film becomes too brittle for peeling at high peeling force, and stick-slip striation defect appears at low peeling force. There exists a critical residual solvent content below which the adhesion between the polyimide film and the substrate is too strong, then peeling is impossible. Existing models for predicting steady peeling and the on-set of peeling defects have been modified and applied to set up the boundaries of the operating window. There also exists another operating window for drying of polyimide, and is presented in the form of drying temperature versus film thickness.
    The effects of uni-axial stretching on the CTE, birefringence and Young’s modulus of a recyclable polyimide film were examined. An operating window which was bounded by two temperatures and draw ratios were found first. Inside this operating window, stable and defect-free stretching was possible. CTE, birefringence and Young’s modulus of the recyclable polyimide film were measured under stretching. Values of birefringence and Young’s modulus go up as the stretching stress in the machine direction increases. On the other hand, CTE in the machine direction decreases as the stretching stress increases. A theoretical model that relates stretching conditions to birefringence and Young’s modulus was developed. CTE can also be evaluated with the Young’s modulus vs CTE data available. Theoretically evaluated physical properties are in qualitative agreement with the experimental data.

    摘要……………………………………………………………………I 英文摘要………………………………………………………………IV 謝誌……………………………………………………………………VI 目錄…………………………………………………………………VIII 表目錄…………………………………………………………………XI 圖目錄…………………………………………………………………XI 第一章、 緒論………………………………………………………1 1-1 聚亞醯胺薄膜之材料介紹與應用………………………………2 1-1-1 聚亞醯胺材料簡介……………………………………………3 1-1-2 軟性電路板之絕緣基材………………………………………4 1-1-3 光學膜與封裝膜………………………………………………5 1-2 聚亞醯胺薄膜之應用製程與其瓶頸……………………………6 1-3 研究文獻回顧……………………………………………………9 1-3-1 溶液鑄膜之研究整理…………………………………………9 1-3-2 乾燥製程之研究整理…………………………………………10 1-3-3 剝膜製程之研究整理…………………………………………12 1-3-4 延伸製程之研究整理…………………………………………19 1-4 本研究之方向……………………………………………………25 1-4-1 未解決的問題…………………………………………………25 1-4-2 本研究計畫……………………………………………………27 1-4-3 本研究內容……………………………………………………28 第二章、 理論模型……………………………………………………42 2-1 塗佈揮發與乾燥研究之理論推導………………………………43 2-1-1 質量平衡………………………………………………………43 2-1-2 能量平衡………………………………………………………44 2-1-3 一維模型之數值計算流程……………………………………46 2-2 剝膜缺陷介紹……………………………………………………46 2-2-1 脆性斷膜現象…………………………………………………46 2-2-2 條紋狀剝膜缺陷………………………………………………47 2-3 剝膜研究之理論推導……………………………………………49 2-3-1 簡易低速剝膜模型……………………………………………50 2-3-2 脆性斷膜模型…………………………………………………55 2-3-3 條紋缺陷剝膜模型……………………………………………58 2-4 延伸研究之理論推導……………………………………………61 2-5 理論分析所需之物性參數估計…………………………………65 2-5-1 塗佈揮發與乾燥製程…………………………………………65 2-5-2 剝膜製程………………………………………………………70 2-5-3 延伸製程………………………………………………………72 第三章、 實驗方法…………………………………………………77 3-1 材料與儀器設備…………………………………………………79 3-1-1材料……………………………………………………………79 3-1-2儀器與設備……………………………………………………81 3-2 物理性質測量方法………………………………………………89 3-3 實驗設計與步驟…………………………………………………95 3-3-1 工程參數………………………………………………………95 3-3-2 乾燥、剝膜與延伸視窗的判斷………………………………97 3-3-3 實驗設計與步驟………………………………………………102 第四章、 塗佈揮發、乾燥與剝膜的實驗結果及理論分析..............117 4-1 聚亞醯胺塗液出模口揮發之初步理論分析結果………………117 4-2 聚亞醯胺高分子乾燥實驗的乾燥操作視窗……………………118 4-3 聚亞醯胺乾燥實驗結果與理論預測比較………………………120 4-4 剝膜視窗之邊界實驗分析………………………………………122 4-5 以理論模型建構剝膜視窗邊界分析……………………………124 4-6 剝膜視窗分析比較………………………………………………128 第五章、 延伸製程的實驗結果及理論分析………………………145 5-1 聚亞醯胺薄膜之延伸缺陷分析…………………………………145 5-1-1 適當延伸溫度之操作範圍……………………………………146 5-1-2 適當延伸倍率之操作範圍……………………………………147 5-2 聚亞醯胺薄膜之延伸視窗之建立………………………………150 5-3 聚亞醯胺薄膜之物性實驗與預測結果比較……………………150 5-3-1 經延伸之薄膜雙折射率探討…………………………………151 5-3-2 經延伸之薄膜楊氏係數與熱膨脹係數探討…………………152 第六章、 結論與未來展望…………………………………………166 6-1 處理預測塗液出模口之揮發與塗膜之乾燥問題………………166 6-2 解決剝膜製程問題………………………………………………167 6-3 解決薄膜高熱膨脹係數的問題與調控預測其薄膜物性………169 6-4 未來展望…………………………………………………………173 附錄A、乾燥模型結果與文獻結果比較………………………………175 附錄B、符號說明………………………………………………………178 附錄C、參考文獻………………………………………………………187 附錄D、作者簡介………………………………………………………202

    [1] Hamamoto T, Inoue H, Miwa Y, Hirano T, Imatani K, Matsubara K, Kohno T. Process for the preparation of aromatic polyimide film. U.S. Patent. 1994;5,308,569.
    [2] Yabuta K, Akahori K. Process for preparing polyimide film. U.S. Patent. 2002;0074686 A1.
    [3] Asakura T, Mizouchi M, Kobayashi H. Process for producing an aromatic polyimide film. U.S. Patent. 1984;4,470,944.
    [4] Okahashi M, Tsukuda A, Miwa T, Edman JR, Paulson CM II. Process for preparing biaxially stretched isotropic polyimide film. U.S. Patent. 1994;5,324,475.
    [5] Powell SF. Method of fabrication free-standing thin films of polyimide. U.S. Patent. 1993;5,261,977.
    [6] Kaneshiro H, Itoh T, Yabuta K, Akahori K. Polyimide film and process for producing the same. U.S. Patent. 2007;0129533 A1.
    [7] Wilson D, Stenzenberger HD, Hergenrother PM. Polyimides. New York: Chapman and Hall, 1990.
    [8] Okahashi M, Tsukuda A, Miwa T, Edman JR, Paulson, Jr. CM. Biaxially stretched isotropic polyimide film having specific properties. U.S. Patent. 1995;5,460,890.
    [9] Yamamoto T, Hosoma T, Yoshioka K. Flexible aromatic polymide film/metal film composite sheet. U.S. Patent. 2001;6,251,507 B1.
    [10] Fujihara K, Ono K, Matsuwaki T. Novel polymide film and use thereof. U.S. Patent. 2007;0042167 A1.
    [11] Yamaguchi H, Murakami M, Kohda M. Polyimide, Polyimide Film and Laminated Body. U.S. Patent. 2008;0044681 A1.
    [12] Nagano H, Kawai H, Nojiri H, Yamamoto T. Polyimide film and process for producing same. U.S. Patent. 1998;4,742,099.
    [13] Chan KP, Hagberg E, Mullen TJ, Odle RR. Polyimide solvent cast films having a low coefficient of thermal expansion and method of manufacture thereof description/claims. U.S. Patent. 2008;0044639.
    [14] Auman BC. Low thermal expansion coefficient polyimides with improved elongation. U.S. Patent. 1993;5,260,408.
    [15] Tang JC, Lin GL, Yang HC, Jiang GJ, Chen-Yang YW. Polyimide-silica nanocomposites exhibiting low thermal expansion coefficient and water absorption from surface-modified silica. J Appl Polym Sci. 2007;104:4096-4105.
    [16] George DE. Low thermal expansion polyimide compositions. U.S. Patent. 1994;5,284,904.
    [17] Siemann U. Solvent cast technology – a versatile tool for thin film production. Progr Colloid Polym Sci. 2005;130:1-14.
    [18] Liu TJ, Liu LD, Tsou JD. A unified lubrication approach for the design of a coat-hanger die. Polym Eng Sci. 1994;34:541-550.
    [19] Wen SH, Liu TJ, Tsou JD. Three-dimensional finite element analysis of polymeric fluid flow in an extrusion die. Part 1: Enterance effect. Polym Eng Sci. 1994;34:827-834.
    [20] Yu YW, Wu PY, Liu TJ. Validity of one-dimensional equation governing extrusion die flow. AIChE J. 1997;43:3117-3120.
    [21] Pan JP, Liu TJ, Wu PY. Theoretical analysis on extrusion die flow of electronic packaging materials. AIChE J. 1999;45:424-431.
    [22] Yu YW, Liu TJ, Hsu CL, Yang YS. A hybrid 3D/2D finite element technique for polymer processing operations. Polym Eng Sci. 1999;39:44-54.
    [23] Okamoto S, Hosoda T, Katagiri S, Ootomo S, Ito T. Newly developed LCP fabricated by solvent-casting method. Sumitomo Kagaku. 2005;I:4-13.
    [24] Hudson SD, Lovinger AJ, Venkataraman SK, Liu C, Manzione LT. Processing/morphology correlations in poly(benzoate-co-naphthoate) liquid crystalline polymers. Polym Eng Sci. 1994;34:1327-1335.
    [25] Harvey AC, Lusignea RW, Rubin LS. Forming biaxially oriented ordered polymer films. U.S. Patent 1990;4,973,442.
    [26] Liu TJ, Yu TA, Cheng SH. Finite difference solution of a Newtonian jet swell problem. Int J Numer Methods Fluids. 1991;12:125-142.
    [27] Yu TA, Liu TJ. Numerical solution of a Newtonian jet emanating from a converging channel. Comput Fluids. 1992;21:537-550.
    [28] Yu TA, Liu TJ. Short communication. An improved finite difference scheme for a Newtonian jet swell problem. Int J Numer Methods Fluids. 1992;14:495-501.
    [29] Tsai CC, Liu TJ. Comparison of three solvers for viscoelastic fluid flow problems. J Non-Newton Fluid Mech. 1995;60:155-177.
    [30] Sartor L. Slot coating: fluid mechanics and die design. PhD Thesis, Univ. Minnesota. 1990.
    [31] Blandin HP, David JC, Vergnaud JM, Lllien JP, Malizewicz M. Modelling of drying of coatings: Effect of the thickness, temperature and concentration of solvent. Prog Organic Coatings. 1987;15:163-172.
    [32] Alsoy S, Duda JL. Drying of solvent coated polymer films. Dry Technol. 1998;16:15-44.
    [33] Vinjamur M, Cairncross RA. Guidelines for dryer design based on results from non-fickian model. J Appl Polym Sci. 2003;87:477-486.
    [34] Zielinski JM, Hanley BF. Practical friction-based approach to modeling multicomponent diffusion. AIChE J. 1999;45:1-12.
    [35] Alsoy S, Duda JL. Modeling of multicomponent drying of polymer films. AIChE J. 1999;45:896-905.
    [36] Alsoy S, Duda JL. Modeling of multilayer drying of polymer films. J Polym Sci Pt B-Polym Phys. 1999;37:1665-1675.
    [37] Cohen ED, Gutoff EB. Modern coating and drying technology. VGH Publisher, New York, 1992.
    [38] Gutoff EB, Kendrick CE. Dynamic contact angles. AIChE J. 1982;28:459-499.
    [39] Wen SH. Ind Mater. 2006;235:74-82.
    [40] Chen PJ, Liu TJ, Wu PY, Tseng CF, Leu CM. Drying-induced curl of polyimide optical films. AIChE J. 2010;56:790-800.
    [41] Basu SK, Bergstreser AM, Francis LF, Scriven LE, McCormick AV. Wrinkling of a two-layer polymeric coating. J Appl Phys. 2005;98:063507.
    [42] Croll SG. The origin of residual internal stress in solvent-cast thermoplastic coatings. J Appl Polym Sci. 1990;23:847-858.
    [43] Lei H. Flow, deformation, stress and failure in solidifying coatings. PhD Thesis, Univ. Minnesota. 1999.
    [44] Crank J. The mathematics of diffusion. 2nd ed. Oxford, New York, 1975.
    [45] Van Krevelen DW, Hoftyzer PJ. Properties of polymers. Oxford, New York, 1976.
    [46] Hong SU. Prediction of polymer/solvent diffusion behavior using free-volume theory. Ind Eng Chem Res. 1995;34:2536-2544.
    [47] Moore DR. An introduction to the special issue on peel testing. Int J Adhesion & Adhesive. 2008;28:153-157.
    [48] Paek SH, Lee KW, Durning CJ. Effect of the environment on the measured values of the adhesion of polyimide to silicon. J Adhesion Sci Techol. 1999;13:423-436.
    [49] Packham DE. Handbook of Adhesion, 2nd ed. New York: Wiley, 2005.
    [50] Spies GJ. The peeling test on redux-bonded joints. J Aircraft Engng. 1953;25:64-70.
    [51] Bikerman JJ. Theory of peeling through a hookean solid. J Appl Phys. 1957;28:1484-1485.
    [52] Jouwersma C. On the theory of peeling. J Polym Sci. 1960;45:253-255.
    [53] Gardon JL. Peel adhesion. II. a theoretical analysis. J Appl Polym Sci. 1963;7:643-665.
    [54] Saubestre EB, Durney LJ, Haidu J, Bastenbeck E. The adhesion of electrodeposits to plastics. Plating. 1965;52:982-1000.
    [55] Kendall K. Peel adhesion of solid films-the surface and bulk effects. J Adhesion. 1973;5:179-202.
    [56] Gent AN, Hamed GR. Peel mechanics for an elastic-plastic adherend. J Appl Polym Sci. 1977;21:2817-2831.
    [57] Kim KS, Aravas N. Elastoplastic analysis of the peel test. Int J Solids Structures. 1988;24:417-435.
    [58] Crocombe AD, Adams RD. An elasto-plastic investigation of the peel test. J Adhesion. 1982;13:241-267.
    [59] Thouless MD, Yang QD. A parametric study of the peel test. Int J Adhesion & Adhesives. 2008;28:176-184.
    [60] Chang FSC. The peeling force of adhesive joints. Trans Soc Rheology. 1960;4:75-89.
    [61] Loukis MJ, Aravas N. The effects of viscoelasticity in the peeling of polymeric films. J Adhesion. 1991;35:7-22.
    [62] Kogan L, Hui CY, Kramer EJ, Wallace E. Rate dependence of the peel force in peel-apart imaging films. J Adhesion Sci Techol. 1998;12:71-94.
    [63] Perera DY. On adhesion and stress in organic coatings. Polymeric Mater Sci. 1994;71:253-254.
    [64] Perera DY. On adhesion and stress in organic coatings. Progr Org Coating. 1996;28:21-23.
    [65] Rowe RC. Film/tablet adhesion, film thickness, internal stresses and bridging of the intagliations-a unified model with practical implications. EUFEPS. 2007;30:236-239.
    [66] Croll SG. Internal strain in solvent-cast coatings. J Coating Technol. 1979;51:64-68.
    [67] Croll SG. Adhesion loss due to internal strain. J Coating Technol. 1980;52:35-43.
    [68] Narechania RG, Bruce JA, Fridmann SA. Polyimide adhesion: mechanical and surface analytical characterization. J Electrochem Soc: Solid-State Science and Technology. 1985;132:2700-2705.
    [69] Miwa T, Tawata R, Numata S. Relationship between structure and adhesion properties of aromatic polyimide. Polymer. 1993;34:621-624.
    [70] Gent AN, Lai SM. Adhesion and autohesion of rubber compounds: effect of surface roughness. Rubber Chem Tech. 1995;68:13-25.
    [71] Aubrey DW, Ginosatis S. Peel adhesion behavior of carboxylic elastomers. J Adhesion. 1981;12:189-198.
    [72] Hu DY, Chen HC. Temperature and humidity effects on adhesion of polyimide film to a silicon substrate. J Adhesion Sci Techol. 1992;6:527-536.
    [73] Hu DY, Chen HC. Humidity effect on polyimide film adhesion. J Mater Sci. 1992;27:5262-5268.
    [74] Song R, Chiang MYM, Crosby AJ, Karim A, Amis EJ, Eidelman N. Combinatorial Peel tests for the characterization of adhesion behavior of polymeric films. Polymer. 2005;46:1643-1652.
    [75] Georgiou I, Hadavinia H, Ivankovic A, Kinloch AJ, Tropsa V, Williams JG. Cohesive zone models and the plastically deforming peel test. J Adhesion. 2003;79:239-265.
    [76] Williams JG. The influence of peel angle on the mechanics of peeling flexible adherends with arbitrary load–extension characteristics. J Adhesion. 1993;41:225-239.
    [77] Kinloch AJ, Lau CC, Williams JG. The peeling of flexible laminates. Int J Fracture. 1994;66:45-70.
    [78] Cotterell B, Hbaieb K, Williams JG, Hadavinia H, Tropsa V. The root rotation in double cantilever beam and peel tests. Mechanics of Materi. 2006;38:571-584.
    [79] Cook JW, Edge S, Packham DE. The adhesion of natural rubber to steel and the use of the peel test to study its nature. Int J Adhesion and Adhesives. 1997;17:333-337.
    [80] Williams JA, Kauzlarich JJ. The influence of peel angle on the mechanics of peeling flexible adherends with arbitrary load–extension characteristics. Tribol Int. 2005;38:951-958.
    [81] Ku CK. Polyimides for adhesiveless flexible copper clad laminate. PhD Thesis, National Tsing Hua University. 2006.
    [82] Yamada T, Nonomura C. An attempt to simulate the bowing phenomenon in tenter with simple models. J Appl Polym Sci. 1993;48:1399-1408.
    [83] Yamada T, Nonomura C. Automated microscopic technique for evaluating poly(vinyl chloride)-plasticizer compatibility. J Appl Polym Sci. 1994;52:1939-1947.
    [84] Tien PK, Ulrich R, Martin RJ. Modes of propagating light waves in thin deposited semiconductor. Appl Phys Lett. 1969;14:291-294.
    [85] Prest Jr. WM, Luca DJ. The origin of the optical anisotropy of solvent cast polymeric films. J Appl Phys. 1979;50:6067-6071.
    [86] Prest Jr. WM, Luca DJ. The alignment of polymers during the solvent-coating process. J Appl Phys. 1980;51:5170-5174.
    [87] Swalen JD, Tacke M, Santo R, Fischer J. Determination of optical constants of polymeric thin films by integrated optical techniques. Optics Commun. 1976;18:387-390.
    [88] Pietralla M, Kilian HG. Birefringence of stretched polyethylene and its relation to changes in structure. J Polym Sci: Polym Phys Ed. 1980;18:285-290.
    [89] Coburn JC, Pottiger MT, Noe SC, Senturia SD. Stress in polyimide coatings. J Polym Sci Part B Polym Phys. 1994;32:1271-1283.
    [90] Pottiger MT, Coburn JC, Edman JR. The effect of orientation on thermal expansion behavior in polyimide film. J Polym Sci Part B Polym Phys. 1994;32:825-837.
    [91] Russell TP, Gugger H, Swalen JHD. In-plane orientation of polyimide. J Polym Sci Part B Polym Phys. 1983;21:1745-1756.
    [92] Engeln I, Hengl R, Hinrichsen G. Thermal expansion and Young's modulus of uniaxially drawn poly(tetrafluoroethylene) in the temperature range from 100 to 400 K. Colloid Polym Sci. 1984;262:780-787.
    [93] Takeuchi Y, Yamamoto F, Nakagawa K, Yamakawa S. Orientation behavior of high-modulus polyoxymethylene produced by microwave heating drawing. J Polym Sci: Polym Phys Ed. 1985;23:1193-1200.
    [94] Numata S, Miwa T. Thermal expansion coefficients and moduli of uniaxially stretched polyimide films with rigid and flexible molecular chains. Polymer. 1989;30:1170-1174.
    [95] Fay CC, Stoakley DM, St Clair AK. Molecular oriented films for space applications. High Perform Polym. 1999;11:145-156.
    [96] Hawkins BP, Hinkley JA, Moore J. Stretch-orientation of LaRCTM RP50 polyimide film. High Perform Polym. 2006;18:469-478.
    [97] Cakmak M, Simhambhatla M. Dynamics of uni and biaxial deformation and its effects on the thickness uniformity and surface roughness of poly (ether ether ketone) films. Polym Eng Sci. 1995;35:1562-1568.
    [98] Zhou X, Cakmak M. Stress–strain behavior as related to surface topography and thickness uniformity in uni- and biaxially stretched PVDF/PMMA blends. Polym Eng Sci. 2007;47:2110-2117.
    [99] King JS, Whang WT, Lee WC, Chang LM. The generation of biaxial optical anisotropies in polyimide films by an uniaxial stretch method. Jpn J Appl Phys. 2006;45:L501-L504.
    [100] King JS, Whang WT, Lee WC, Chang LM. Effect of backbone on the biaxial retardation of polyimide films in uniaxial stretch. Mater Chem and Phys. 2007;103:35-40.
    [101] El-Tonsy MM, Meikhail MS, Felfel RM. Automatic measurement of the absolute CTE of thin polymer samples. II. effect of chain orientation on thermal expansion of drawn polymer films. J Appl Polym Sci. 2006;100:4452-4460.
    [102] Sugihara G, Iwasaki T, Yamada T, Yokoyama A, Fukunaga M. Influence of process conditions on bowing phenomenon in successive biaxial stretching with tenter. Materials processing and design: Modeling, simulation and applications - Numiform 2004 - Proceedings of the 8th international conference on numerical methods in industrial forming processes. AIP conferenceproceedings. 2004;712:1453-1458.
    [103] Sato T, Itadani, M, Arakawa K, Yamada T. Prediction of molecular orientation in film stretching processes. Jpn J Appl Phys. 2007;46:7782-7788.
    [104] Hibi S, Maeda M, Kubota H. Molecular orientation behaviours of uniaxially stretched poly (vinyl chloride) film: 3. Effect of molecular orientation on anisotropy of Young modulus in uniaxially stretched poly (vinyl chloride) film. Polymer. 1977;18:801-806.
    [105] Bird RB, Steward WE, Lightfoot EN. Transport phenomena 2nd ed. New York: Wiley, 2005.
    [106] Chen PJ. Optical and mechanical properties of cast-dried polyimide films. PhD Thesis, National Tsing Hua University. 2009.
    [107] Seitz JT. The estimation of mechanical properties of polymers from molecular structure. J Appl Polym Sci. 1993;49:1331-1351.
    [108] Kendall K. The dynamics of slow peeling. Int J Fract. 1975;11:3-12.
    [109] Ciccotti M, Giorgini B, Vallet D, Barquins M. Complex dynamics in the peeling of an adhesive tape. Int J Adhesion & Adhesives. 2004;24:143-151.
    [110] Tsai, KH, Kim KS. Stick-slip in the thin film peel test. I: The 90o peel test. Int J Solids Structures. 1993;30:1789-1806.
    [111] Ryschenkow G, Arribart H. Adhesion failure in the stick-slip regime: optical and AFM characterizations and mechanical analysis. J Adhesion. 1996;58:143-161.
    [112] Urahama Y. Effect of peel load on stringiness phenomena and peel speed of pressure-sensitive adhesive tape. J Adhesion. 1989;31:47-58.
    [113] Lin YY, Hui CY, Wang YC. Modeling the failure of an adhesive layer in a peel test. J Polym Sci: Part B: Polym Phys. 2002;40:2277-2291.
    [114] Masuda R, Omiya M, Inoue H, Kishimoto K. Effect of peel rate on interfacial strength. Key Engng Mater. 2007;345-346:185-188.
    [115] McGuiggan PM, Chiche A, Filliben JJ, Yarusso DJ. Peel of an adhesive tape from a temperature-gradient surface. Int J Adhesion & Adhesives. 2008;28:185-191.
    [116] Vincent PI. A correlation between critical tensile strength and polymer cross-sectional area. Polymer. 1972;13:558-560.
    [117] Zhang R, Mattice WL. Molecular dynamics study of the persistence lengths of a new class of polyimide fibers. J Polym Sci: Part B: Polym Phys. 1996;34:565-573.
    [118] Kratky O, Porod G. R□ntgenuntersuchung gel□ster Fadenmolek□le. Rec Trav Chim Pays-Bas. 1949;68:1106-1123.
    [119] Flory PJ. Statistical mechanics of chain molecules. New York: Wiley, 1969.
    [120] Furukawa J. A molecular theory of tacky adhesion. Bull Chem Soc Jpn. 1996;69:1797-1803.
    [121] Introduction to Adhesion Science (Part 2), Three Bond Technical News, Issued April 1, 1983.
    [122] Terui Y, Ando S. Coefficients of molecular packing and intrinsic birefringence of aromatic polyimides estimated using refractive indices and molecular polarizabilities. J Polym Sci: Part B: Polym Phys. 2004;42:2354-2366.
    [123] Ando S, Sawada T, Sasaki S. In-plane birefringence and elongation behavior of uniaxially drawn aromatic polyimide films. Polym Adv Technol. 2001;12:319-331.
    [124] Tanaka M, Young RJ. Molecular orientation distributions in uniaxially oriented poly(L-lactic acid) films determined by polarized raman spectroscopy. Macromolecules. 2006;39:3312-3321.
    [125] Bower DI. An introduction to polymer physics. United Kingdom: Cambridge, 2002.
    [126] Hardaker SS, Samuels RJ. A process-structure-property study of anisotropic PMDA-ODA films. J Polym Sci: Part B Polym Phys. 1997;35:777-788.
    [127] Nielsen LE, Landel RF. Mechanical properties of polymers and composites, 2nd ed. New York: Marcel Dekker, 1994.
    [128] Erhand G. Designing with plastics. Cincinnati: Hanser, 2006.
    [129] Smallwood IM. Handbook of organic solvent properties. New York: Halsted, 1996.
    [130] Vrentas JS, Duda JL. Diffusion in polymer-solvent system I. re-examination of the free-volume theory. J Polym Sci: Part B: Polym Phys. 1977;15:403-416.
    [131] Vrentas JS, Duda JL. Diffusion in polymer-solvent system II. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight. J Polym Sci: Part B: Polym Phys. 1977;15:403-416.
    [132] Park KS, Kim D. Determination of diffusion and mass transfer coefficients during drying of solvent-absorbed polymer films. Polym J. 2000;32:415-421.
    [133] Bondi A. Physical properties of molecular crystal, liquids and glass. New York: Wiley, 1968.
    [134] Dullien FAL. Predictive equations for self-diffusion in liquids: a different approach. AIChE J. 1972;18:62-70.
    [135] Jiang WH, Han R. Prediction of solvent-diffusion coefficient in polymer by a modified free-volume theory. J Appl Polym. 1999;77:428-436.
    [136] Bristow GM, Watson WF. Cohesive energy densities of polymers: part 1.-Cohesive energy densities of rubbers by swelling measurements. Trans Faraday Soc. 1958;54:1731-1741.
    [137] Weast RC. Handbook of Chemistry & Physics, 66th ed. Florida: CRC, 1985.
    [138] Askeland DR, Phul□ PP. The Science and Engineering of Materials, 4th ed. Glenrothes: Thomson-Engineering, 2002.
    [139] Buchman A, Bryant RG. Molded carbon–carbon composites based on microcomposite technology. Appl Compos Mater. 1999;6:309-326.
    [140] Shirouzu S, Ishii T, Iga T, Chino S, Hayashi M, Tomioka T, Sibasaki S, Arai Y, Ooki Y, Hayashi K. Development of biaxially stretched film for flexible printed circuit boards. Jpn J of Appl Phys, Part 1: Regular Papers & Short Notes & Review Papers. 1995;34:4880-4883.
    [141] Shackelford JF, Alexander W. CRC Materials Science and Engineering Handbook, 3rd ed. Florida: CRC, 1994.
    [142] Galay J, Cakmak M. Online monitoring of birefringence development in heat-setting polymer films with a fast dual-wavelength optical technique. I. Uniaxially oriented poly(ethylene naphthalate). J Polym Sci: Part B: Polym Phys. 2001;39:1107-1121.
    [143] Nakamura T, Katai Y. Solution Casting Process. U.S. Patent 2002; 6,368,534.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE