簡易檢索 / 詳目顯示

研究生: 江培嘉
Pei-Chia Chiang
論文名稱: 使用分割攻破法做靜態隨機存取記憶體良率的快速分析
Divide-and-Conquer Methodology for Fast SRAM Yield Analysis
指導教授: 黃錫瑜
Shi-Yu Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 46
中文關鍵詞: 靜態隨機存取記憶體良率分析
外文關鍵詞: SRAM, Yield
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著單系統晶片的風行,靜態隨機存取記憶體扮演著越來越重要的角色。近年來,由於內嵌式記憶體的大量使用,使得不管是學界還是業界,都注重在高速或是低功耗的靜態隨機存取記憶體的設計上;讓我們仔細思考一個問題,當我們都只專注在電路設計,卻忽略了我們的設計是不是可以有高良率的產出,將會使我們做出來的晶片大部分變成是浪費資源的垃圾。尤其在現今的晶片設計上,我們可以發現有超過百分之五十以上的面積,都是讓靜態隨機存取記憶體給佔去;也就是說,靜態隨機存取記憶體在晶片中有較高的比例會發生損毀的情形,所以如何在設計的時候,就考量晶圓製程變異所造成的靜態隨機存取記憶體損毀的問題,是我們的首要課題。在此,我們提出了分割攻破的方法,來做靜態隨機存取記憶體的良率分析。主要的目標是希望在不喪失良率分析精準度的情況下,加快我們的分析速度。為了達到這樣的目標,我們使用了兩個主要的技巧;首先,我們藉由模擬軟體,建立一個控制電路的輸出波型的模型。接著,我們使用這些模型來重建一組輸入波,讓8×8 的靜態隨機存取記憶體陣列來使用。藉由這些輸入的訊號和軟體的模擬,我們可以在記憶體陣列的輸出端,得到一些邏輯1或是邏輯0的值,來判斷陣列內的記憶體單元,是否是正常運作,最後我們就可以得到良率的預估值。實驗的結果顯示,我們的方法可以比傳統模擬靜態隨機存取記憶體快上三百倍的模擬時間,而且和它相比卻僅僅只有百分之三的誤差;由此可見,我們的方法是有效率又精確。


    We present a divide-and-conquer methodology for SRAM yield analysis. The ultimate goal is to accelerate the speed of yield analysis without missing accuracy. There are two major techniques in this methodology. Firstly, we attempt to establish the model of control circuit output signal through HSPICE simulation. Secondly, we use the model from first step to re-generate input pattern waveforms for 8×8 SRAM array. Then, take these waveforms into 8×8 SRAM array HSPICE file and run simulation. Finally, we can get a yield prediction value. Experimental results shows that this two-level abstraction method can speed up the yield estimation process by 300 times, whereas keeping the estimation error to only 3% as compared to the traditional time-consuming simulation with the entire SRAM circuit.

    Contents Abstract………………………………………………………………….1 Contents………………………………………………………………….2 List of Figures…………………………………………………………...4 List of Tables…………………………………………………………….6 Chapter 1 Introduction…………………………………………………7 Chapter 2 Preliminaries……………………………………………….11 2.1 SRAM Architecture…………………………………………..12 2.2 The SRAM Cell….…………………………………………...13 2.3 Static-Noise Margin..................................................................17 Chapter 3 Our Divide-and-Conquer Methodology.............................19 3.1 Control Circuit Output Signal Model…………………………20 3.2 SRAM Yield Predict...………. ……………………………….23 3.3 Consideration of Static-Noise Margin Yield..............................26 Chapter 4 Experimental Results……………………………………...29 4.1 Test Case…................................................................................30 4.2 Results of Control Circuit Output Signal Model....…………...31 4.3 Results of SRAM yield prediction...……….............................34 4.4 Results of SNM yield estimate..................................................38 Chapter 5 Conclusion………………………………………………….39 Bibliography……………………………………………………………40

    [1] 林子貴, “An application of Monte-Carlo on SRAM: Improvement & Optimization,” NCTU thesis.
    [2] N. Azizi, F. N. Najm, and A. Moshovos, “Low-Leakage Asymmetric-Cell SRAM,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp.701-715, Vol. 11, (2003).
    [3] A. J. Bhavnagarwala, X. Tang, and J. D. Meindl, “The Impact of Intrinsic Device Fluctuations on CMOS SRAM Cell Stability,” IEEE Journal of Solid-State Circuits, pp. 658-665, Vol. 36, (2001).
    [4] M. –F. Chang, K. –A. Wen, and D. –M. Kwai, “Supply and Substrate Noise Tolerance Using Dynamic Tracking Clusters in Configurable Memory Designs,” Proceedings of 5th International Symposium on Quality Electronic Design, pp.297-302, (2004).
    [5] V. Degalahal, N. Vijaykrishnan, and M. J. Irwin, “Analyzing Soft Errors in Leakage Optimized SRAM Design,” Proceedings of 16th International Conference on VLSI Design, pp.227-233, (2003).
    [6] L. Ding and P. Mazumder, “The Impact of Bit-Line Coupling and Ground Bounce on CMOS SRAM Performance,” Proceedings of 16th International Conference on VLSI Design (VLSI’03), pp. 234-239, (2003).
    [7] F. Duan, R. Castagnetti, R. Venkatraman, O. Kobozeva, and S. Ramesh, “Design and Use of Memory-Specific Test Structures to Ensure SRAM Yield and Manufacturability,” Proceedings of Fourth International Symposium on Quality Electronic Design, pp.119-124, (2003).
    [8] K. R. Forbes and N. Arguello, “Using Time-Dependent Reliability Fallout as a Function of Yield to Optimize Burn-in Time for a 130 nm SRAM Device,” IEEE International Integrated Reliability Workshop Final Report, pp.20-23, (2003).
    [9] M. Gomathisankaran and A. Tyagi, “WARM SRAM: A Novel Scheme to Reduce Static Leakage Energy in SRAM Arrays,” Proceedings of IEEE Computer society Annual Symposium on VLSI, pp.105-112, (2004).
    [10] T. B. Hook, M. Breitwisch, J. Brown, P. Cottrell, D. Hoyniak, C. Lam, and R. Mann, “Noise Margin and Leakage in Ultra-Low Leakage SRAM Cell Design,” IEEE Transactions on Electron Devices, pp.1499-1501, (2002).
    [11] C.-L. Hsu and M.-H. Ho, “High-Speed Sense Amplifier for SRAM Applications,” Proceedings of The 2004 IEEE Asia-Pacific Conference on Circuits and Systems, pp.577-580, Vol. 1, (2004).
    [12] M. Jagasivamani and D. S. Ha, ”Development of a Low-Power SRAM Compiler,” The 2001 IEEE International Symposium on Circuits and Systems (ISCAS’2001), pp. 498-501, Vol. 4, (2001).
    [13] Y. -M. Jiang, K. –T. Cheng, and A. –C. Deng, “Estimation of Maximum Power Supply Noise for Deep Sub-Micron Designs,” Proceedings of International Symposium on Low Power Electronics and Design, pp.233-238, (1998).
    [14] D. W. Kang and Y.-B. Kim, ”A Deep Sub-Micron SRAM Cell Design and Analysis Methodology,” Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems (MWSCAS’2001), pp 858-861, Vol. 2, (2001).
    [15] K. Koh, B. J. Hwang, G. H. Han, K. H. Kwak, Y. S. Son, J. H. Jang, H. S. Kim, D. Park, and K. Kim, “Ultra-Low Power and High Speed SRAM for Mobile Applications Using Single Poly-Si Gate 90 nm CMOS Technology,” Symposium on VLSI Technology, pp. 67-68, (2003).
    [16] S. Mukhopadhyay, H. Mahmood-Meimand, and K. Roy, ”Modeling and Estimation of Failure Probability due to Parameter Variations in Nano-scale SRAM for Yield Enhancement,” Symposium on VLSI Circuits, pp. 64-67, (2004).
    [17] S. Mukhopadhyay, H. Mahmoodi, and K.Roy, “Statistical Design and Optimization of SRAM Cell for Yield Enhancement,” IEEE/ACM International Conference on Computer Aided Design (ICCAD’2004), pp.10-13, (2004).
    [18] M. Ottavi, L. Schiano, X. Wang, Y. -B. Kim, F. J. Meyer, and F. Lombardi, “Yield Evaluation Methods of SRAM Arrays: A Comparative Study,” Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference (IMTC’04), pp. 1525-1530, Vol. 2, (2004).
    [19] E. SEEVINCK, F. J. LIST, and J. LOHSTROH, “Static-Noise Margin Analysis of MOS SRAM cell,” IEEE Journal of Solid-State Circuits, pp. 748-754, Vol. sc-32, (1987).
    [20] O. Semenov, A. Pavlov, and M. Sachdev, “Sub-quarter Micro SRAM Cells in Low-Voltage Operation: A Comparative Analysis,” IEEE International Integrated Reliability Workshop Final Report, pp. 168-171, (2002).
    [21] O. THOMAS, A. AMARA, A. VLADIMIRESCU, “Stability Analysis of a 400 mV 4-Transistor CMOS-SOI SRAM Cell Operated in Subthreshold,” IEEE Conference on Electron Devices and Solid-State Circuits, pp. 247-250, (2003).
    [22] R. Venkatraman, R. Castagetti, O. Kobozeva, F. L. Duan, A. Kamath, S.T. Sabbagh, M. A. Vilchis-Cruz, J. J. Liaw, J.-C. You, and S. Ramesh, “The Design, Analysis, and Development of Highly Manufacturable 6-T SRAM Bitcells for SoC Applications,” IEEE Transactions on Electron Devices, pp.218-226, Vol. 52, (2005).
    [23] B. Wicht, T. Nirschl, D. Schmitt-Landsiedel, “A Yield-Optimized Latch-Type SRAM Sense Amplifier,” Proceedings of the 29th European Solid-State Circuits Conference (ESSCIRC’2003), pp. 409-412, (2003).
    [24] S. Zhao, K. Roy, and C. –K. Koh, “Estimation of Inductive and Resistive Noise on Power Supply Network in Deep Sub-Micron CMOS Circuits,” Proceedings of International Conference on Computer Design, pp.65-72, (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE