簡易檢索 / 詳目顯示

研究生: 蘇家興
Jia-Shing Su
論文名稱: 印刷電路板表面黏著元件視覺檢測系統
Visual Inspection System for Surface Mounted Components on Printed Circuit Board
指導教授: 林士傑
Shin-Chien Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 64
中文關鍵詞: 機械視覺類神經網路印刷電路板檢測系統指標挑選
外文關鍵詞: machine vision, neural network, PCB inspection system, index selection
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 印刷電路板檢測已經發展多年,但仍有許多地方有待提升,如縮短檢測時間、降低錯誤分類和缺陷漏失率等。
    本研究將提出一套較為強健且檢測時間較短的檢測系統。此系統將分為線上缺陷檢測及離線缺陷分類兩部分。文獻中之相關係數法、灰階分區統計指標、誤差分佈誤差總和指標、高灰階差值像素比例指標將被分析之,並提出指標挑選方法以幫助尋找較好的檢測指標組合。另外,我們也將提出新的指標以達到系統需求並提升系統效能。由於缺陷分類較為困難,類神經網路也許將會使用於系統上。
    當系統設置完成,為了測試系統的可靠性,大量的線上檢測影像將會被用於測試機台的可靠性。


    PCB inspection has been developed for many years, but it still needs some improvement such as, inspection time, incorrect, and fault miss rate etc.
    This paper will propose a more robust and faster PCB inspection system. The inspection system will be divided into two stages, namely, defects detection and defects classification. In order to find better inspection combination of indices, there are pattern matching method, regional gray level index (IL2), high gray level difference index (IT1), histogram subtraction index (IL1), run-length index, and projection to be analyzed and we will propose a new method to choose index. Because defects classification is more difficult, neural network may be adopted in inspection system. Furthermore, we will propose new indices in order to improve inspection system.
    After inspection system is finished, there will be lots of online images to verify the feasibility of system.

    目 錄 摘要 I Abstract II 誌謝 III 目 錄 IV 表 目 錄 VI 圖 目 錄 VII 第一章 緒論 1 1-1 前言 1 1-2 表面黏著元件缺陷與線上生產情形 3 1-3 研究方法與動機 5 第二章 文獻回顧 10 2-1 自動光學檢測系統的效能指標 10 2-2 檢測演算法文獻回顧 11 2-3 類神經網路之簡介 13 第三章 系統規劃 24 3-1 系統架構 24 3-2 影像特徵指標 25 3-3 影像特徵指標的選用 29 3-4 結語 30 第四章 系統訓練 33 4-1 系統訓練之規畫 33 4-2指標分佈與討論 35 4-3 系統訓練結果 38 4-4 系統訓練結果結論 42 第五章 系統測試 53 5-1 系統第一階段測試 53 5-2系統第二階段結果 54 5-3結論 56 第六章 結論與未來工作 60 6-1 結果討論 60 6-2 未來工作 62 參考文獻 63 表 目 錄 表4-1 取像設備OPTIMA 7300規格 44 表4-2 系統訓練樣本之演算法對於各分類之分辨係數表 45 表4-3 系統訓練第一階段效能比較(考慮漏失率為零) 46 表4-4 系統訓練第二階段效能比較 47 表5-2 系統測試第二階段效能 58 表5-3 實際測試樣本分辨係數比較 59 圖 目 錄 圖1-1 墓碑(Tombstone)缺陷示意圖 7 圖1-2 空銲(No Solder)缺陷示意圖 7 圖1-3 橋接(Bridge)缺陷示意圖 8 圖1-4 翻件(Reverse)缺陷示意圖 8 圖1-5 歪斜(Skew)缺陷示意圖 9 圖1-6 錯件(Wrong Component)缺陷示意圖 9 圖2-1 Run-length Encoding法示意圖 20 圖2-2 正投影法之檢測視窗(Window)與判斷示意圖 20 圖2-3 單一神經元模型圖 21 圖2-4 倒傳遞類神經網路模型 21 圖2-5 活化函數(activation function)之Sigmoid function 22 圖2-6 活化函數(activation function)之Tangent function 22 圖2-7 梯度下降原理(Gradient Decent) 23 圖3-1 二階段系統流程圖 32 圖4-1 Optima 7300光學檢測機台 48 圖4-2三種缺件影像及編號 48 圖4-3 18種訓練標準影像 49 圖4-4(a) 訓練樣本之IP與IT指標分布圖 50 圖4-4(b) 訓練樣本之ID與IH指標分布圖 50 圖4-4(c) 訓練樣本之IW與IN指標分布圖 51 圖4-5 分辨係數與合格-缺陷分類錯率比較 51 圖4-6 比值對誤判率之影響 52

    [1] Optima 7300 post-reflow automated optical inspectionsystem manual, Teradyne Inc. , Agoura Hills, CA.
    [2] R. T. Chin, “Automated visual inspection:a survey,” IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4(6), pp. 557–573, 1982.
    [3] R. T. Chin, “Survey: automated visual inspection: 1981 to 1987,” Computer Vision Graphics Image Process, Vol. 41, pp. 346–381, 1988.
    [4] M. Moganti and F. Ercal, “Automatic PCB inspection algorithms : a survey,” Computer Vision and Image Understanding, Vol. 63, No. 2, pp. 287-313, March 1996.
    [5] H. H. Loh, and M. S. Lu, “Printed circuit board inspection using image analysis,” IEEE Transactions on Industry Applications, Vol. 35, No.2, pp. 426-432, 1999.
    [6] R. Jain, R. Kasturi, and B. G. Schunk, “Machine Vision,” New York:McGraw-Hill, 1995.
    [7] E. K. Teoh, D. P. Mital, B. W. Lee, and L. K. Wee, “Automated visual inspection of surface mount PCBs,” Industrial Electronics Society, 16th Annual Conference of IEEE, Vol. 1, pp. 576-580, 1990.
    [8] Z. Ibrahim, Al-Attas, S. A. R. , Z. Aspar, “Analysis of the wavelet-based image difference algorithm for PCB inspection,” SICE 2002.Proceedings of the 41st SICE Annual Conference, Vol.4, pp.2108–2113, 5-7 Aug. 2002.
    [9] Y. H. Lin, “The estimation for algorithms of visual inspection of surface mount PCBs,” Master Thesis, National Tsing Hua University, Taiwan (in Chinese), 2003.
    [10] T. H. Kim, T. H. Cho, Y. S. Mon, and S. H. Park, “Visual inspection for the classification of solder joints,” Pattern Recognition, Vol. 32, pp. 565-575, 1999.
    [11] L. V. Fausett, “Fundamentals of neural networks,” Prentice-Hall, Englewood, Cliffs, NJ, 1994.
    [12] K. Tarun, and T. Khanna, “Foundations of neural networks,” Reading, Mass. :Addison-Wisley, 1990.
    [13] P. Piction, “Introduction to neural networks,” Lon- don:Macillan, 1994.
    [14] D. B. Perng, G. Y. Peng, C. J. Yan, and C. C. Chou, “A new machine vision system for SMD PCB auto-inspection,” The International Symposium on Measurement Technology & Intelligent Instrument ISMTII’ 2001, Cairo, Egypt, 25 – 29 Sept. 2001.
    [15] D. Demir, S. Birecik, F. Kurugollu, M. Sezgin, I. O. Bucak, B. Sankur, and E. Anarim, “Quality inspection in PCBs and SMDs using computer vision techniques,” Industrial Electronics, Control and Instrumentation, 1994, 20th International Conference on Vol. 2, pp. 857–861, 5-9 Sept. 1994.
    [16] W. Y. Wu, M. J. Wang, and C. M. Liu, “Automated inspecttion of printed circuit board through machine vision,” Computer in Industry, Vol. 28, No. 2, pp. 103-111, May 1996.
    [17] D. L. Tsai, C. H. Tsai and S. C. Lin, “Using neural network for computer vision inspection of printed circuit board,” Proc. 4th Conference on Precision Machinery and Manufacturing, A03-004, Taipei, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE