簡易檢索 / 詳目顯示

研究生: 黃聖智
Huang, Sheng Jhih
論文名稱: 有機無機錫鉛混合型鈣鈦礦太陽能電池及其在大氣環境降解機制之研究
Degradation Mechanism Study of Mixed Tin-Lead Iodide Perovskite Solar Cell Materials
指導教授: 楊耀文
Yang, Yaw-Wen
口試委員: 陳益佳
Chen, I-Chia
刁維光
Diau, Eric W.G
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 170
中文關鍵詞: 鈣鈦礦降解X光光電子激發能譜
外文關鍵詞: perovskite, tin, degradation, XPS
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中探討錫鉛混合鈣鈦礦對於大氣環境的穩定性及降解機制相關研究,透過有系統的調整錫和鉛中心金屬比例以及陽離子甲脒及甲基銨得到最佳鈣鈦礦比例MA0.5FA0.5Sn0.25Pb0.75I3,並進一步利用MA0.5FA0.5Sn0.25Pb0.75I3以及單一陽離子MASn0.25Pb0.75I3和FASn0.25Pb0.75I3以進行大氣環境降解模擬研究,透過設計了三種六小時照光環境分別為低溼度氧氣、高溼度氮氣、及高溼度氧氣共存的環境。由XPS數據可以發現在低溼度氧氣並同時照光的環境下對於鈣鈦礦中陰離子I 3d訊號明顯減弱並產生I2(s),主要原因是氧氣與受到照光激發的鈣鈦礦產生超氧化物(superoxide(O2-)),並進一步與鈣鈦礦反應,造成鈣鈦礦降解。同時鈣鈦礦中陽離子FA+較MA+對於超氧化物有較強的抵抗力,其N 1s受到破壞較輕微,不過在高溼度氮氣環境下由於FA+對水氣較敏感因此在N 1s細掃圖譜中有較嚴重的破壞,以進行水解並進一步去質子化反應。而樣品MA0.5FA0.5Sn0.25Pb0.75I3中的兩種陽離子亦有同樣的趨勢。在中心金屬錫氧化部份,皆會發現正二價錫訊號明顯減弱,反應了不同陽離子MA+和FA+並無法對於中心金屬錫氧化效應具有明顯抵抗的效果。Sn 3d的細掃圖譜偵測到Sn+2氧化後形成正四價的錫相關產物相對於Sn+2易氧化的特性,較穩定的Pb+2並無明顯變化。看到在高溼度氧氣時,中心金屬Sn氧化的情況大致上較偏向於H2O,表示H2O相較於O2有較優先的反應順序,可能是因為H2O相對O2較易吸附在鈣鈦礦上,阻礙了O2和中心金屬Sn的反應。綜合三種環境的結果,陰離子、陽離子及中心金屬降解反應,最終造成鈣鈦礦的崩壞。


    In this thesis, we report on an environmental stability study of mixed tin/ lead perovskite (PSK) solar cell materials. By systematically varying the cation ratios of Sn/Pb and formamidinium (FA)/ methylammonium (MA) in the PSK for the highest efficiency of solar cell based on p-i-n configuration of FTO/ PEDOT:PSS/ PSK/ C60/ BCP/Ag, an optimal composition of MA0.5FA0.5Sn0.25Pb0.75I3 was obtained with a power conversion efficiency of 11.7%. This MA0.5FA0.5Sn0.25Pb0.75I3 and the other two sole-cation PSK’s, MASn0.25Pb0.75I3 and FASn0.25Pb0.75I3, were then irradiated with AM1.5 light while exposed to three types of gaseous ambient for 6 h: dry O2, moist N2, and moist O2, with relative humidity controlled either below 10% or above 70% for dry and moist conditions, respectively. XPS results show that the light illumination in dry O2 condition leads to a large I 3d signal decrease and the formation of I2, believed to be due to superoxide formed from electron attachment reaction of O2 with electrons provided by the photosensitized PSK. Moreover, FA is found to be less reactive toward superoxide than MA, as judged from XPS N 1s signal. In contrast, under moist N2 condition, FA is found to degrade further than MA mostly through deprotonation reactions, presumably due to its higher affinity with water molecules via H-bonding. Sn+2 in PSK is easily oxidized into Sn+4 to yield SnO2 and other PSK of +4 oxidation state like MA2SnI6, whereas almost no chemical state change is found for Pb. In moist O2 environment, the oxidation of Sn seems to resemble that occurred in moist N2, suggesting that PSK is prone to the attack by H2O than O2. Taken together, the degradation of mixed Sn and Pb PSK proceeds through the loss of both types of cations as dictated by their respective chemistry, and the oxidation of metal cations.

    第1章 緒論 20 1-1 前言 20 1-2 太陽能電池原理介紹 22 1-3 太陽能電池種類介紹 26 1-3-1 矽晶太陽能電池 27 1-3-2 化合物半導體太陽能電池 28 1-3-3 有機光伏打電池(Organic photovoltaics, OPV) 30 1-3-4 染料敏化太陽能電池(Dye sensitized solar cell, DSSC) 31 1-3-5 新世代太陽能電池 34 1-4 有機/無機混合鈣鈦礦太陽能電池(Organic/inorganic hybrid perovskite solar cells, PSCs) 36 1-4-1 鈣鈦礦太陽能電池發展史 36 1-4-2 鈣鈦礦組成架構 37 1-4-3 鈣鈦礦之鹵素離子(X)介紹 41 1-4-4 鈣鈦礦之陽離子(A)介紹 46 1-4-5 中心金屬離子(X)介紹 49 1-4-6 Sn-based鈣鈦礦太陽能電池發展 50 1-4-7 元件架構及其製備方式 58 1-4-8 元件材料能階圖 64 1-4-9 鈣鈦礦元件穩定度 65 1-5 研究動機 71 第2章 實驗技術與原理介紹 72 2-1 同步輻射光源(synchrotron radiation source) 72 2-2 X光光電子能譜(X-ray Photoemission Spectroscopy, XPS) 75 2-3 紫外光光電子能譜(Ultraviolet Photoemission Spectroscopy, UPS) 82 2-4 X光繞射(X-ray Diffraction, XRD) 85 2-5 紫外-可見光吸收光譜(Ultraviolet – visible absorption spectroscopy, UV-Vis) 88 2-6 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 90 2-7 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) 93 第3章 實驗藥品、儀器及實驗步驟 95 3-1 實驗藥品與氣體 95 3-2 儀器設備 96 3-3 實驗步驟 98 3-3-1 基材前處理 98 3-3-2 元件製備 99 3-3-3 不同陽離子比例之鈣鈦礦吸光層溶液配置(FAxMA1-xSn0.25Pb0.75I3) 100 3-3-4 不同中心金屬比例之鈣鈦礦吸光層溶液配置(FA0.5MA0.5SnxPb1-xI3) 101 3-3-5 鈣鈦礦吸光層薄膜製作 101 3-3-6 真空蒸鍍系統 104 3-3-7 O2與H2O環境模擬手套箱 106 3-3-8 超高真空(Ultra-high vacuum, UHV)表面分析系統 108 3-3-9 X光電子能譜與紫外光電子能譜量測 110 第4章 實驗結果與討論 112 4-1 混合陽離子之鈣鈦礦特性分析 112 4-2 混合中心金屬之鈣鈦礦特性分析 120 4-3 水氧模擬環境中分析鈣鈦礦降解機制 126 4-3-1 在原始(pristine)狀態中鈣鈦礦XPS、UPS特性分析 127 4-3-2 MASn0.25Pb0.75I3 130 4-3-3 FASn0.25Pb0.75I3 141 4-3-4 MA0.5FA0.5Sn0.25Pb0.75I3 152 4-3-5 綜合討論 163 第5章 結論 166 第6章 參考文獻 168

    (1) https://commons.wikimedia.org/wiki/File:World_energy_consumption_by_fuel.svg.
    (2) http://www.upsbatterycenter.com/blog/a-new-and-more-efficient-solar-cell/.
    (3) https://zh.wikipedia.org/zh-tw/PN%E7%BB%93.
    (4) http://www.giichinese.com.tw/report/sne180623-eva-film-solar-cell.html.
    (5) http://met.usc.edu/projects/solarcells.php.
    (6) http://pveducation.org/pvcdrom/short-circuit-current.
    (7) http://designer.mech.yzu.edu.tw.
    (8) http://www.che.rochester.edu/Projects/tanglab/research/cdte.html.
    (9) Tang, C. W. Appl.Phys.Lett. 1986, 48, 183.
    (10) http://www.sigmaaldrich.com/materials-science/organic-electronics/opv-tutorial.html.
    (11) http://www.nrel.gov/.
    (12) Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Renew. Sust. Energ. Rev 2017, 68, 234.
    (13) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc 2009, 131, 6050.
    (14) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G. Sci Rep 2012, 2, 591.
    (15) Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nat. Photonics 2014, 8, 506.
    (16) https://en.wikipedia.org/wiki/Goldschmidt_tolerance_factor.
    (17) Chen, Q.; De Marco, N.; Yang, Y.; Song, T.-B.; Chen, C.-C.; Zhao, H.; Hong, Z.; Zhou, H.; Yang, Y. Nano Today 2015, 10, 355.
    (18) Brivio, F.; Walker, A. B.; Walsh, A. APL Mater. 2013, 1, 042111.
    (19) Baikie, T.; Fang, Y.; Kadro, J. M.; Schreyer, M.; Wei, F.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628.
    (20) Liu, Y.; Yang, Z.; Cui, D.; Ren, X.; Sun, J.; Liu, X.; Zhang, J.; Wei, Q.; Fan, H.; Yu, F.; Zhang, X.; Zhao, C.; Liu, S. F. Adv. Mater. 2015, 27, 5176.
    (21) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Nano Lett. 2013, 13, 1764.
    (22) Filip, M. R.; Eperon, G. E.; Snaith, H. J.; Giustino, F. Nat. Commun. 2014, 5, 5757.
    (23) Mosconi, E.; Amat, A.; Nazeeruddin, M. K.; Grätzel, M.; De Angelis, F. J. Phys. Chem. C 2013, 117, 13902.
    (24) Yu, H.; Wang, F.; Xie, F.; Li, W.; Chen, J.; Zhao, N. Adv. Funct. Mater. 2014, n/a.
    (25) Tidhar, Y.; Edri, E.; Weissman, H.; Zohar, D.; Hodes, G.; Cahen, D.; Rybtchinski, B.; Kirmayer, S. J. Am. Chem. Soc. 2014, 136, 13249.
    (26) Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019.
    (27) Pellet, N.; Gao, P.; Gregori, G.; Yang, T. Y.; Nazeeruddin, M. K.; Maier, J.; Gratzel, M. Angew. Chem. Int. Ed. 2014, 53, 3151.
    (28) Choi, H.; Jeong, J.; Kim, H.-B.; Kim, S.; Walker, B.; Kim, G.-H.; Kim, J. Y. Nano Energy 2014, 7, 80.
    (29) Yi, C.; Luo, J.; Meloni, S.; Boziki, A.; Ashari-Astani, N.; Grätzel, C.; Zakeeruddin, S. M.; Röthlisberger, U.; Grätzel, M. Energy Environ. Sci. 2016, 9, 656.
    (30) Bernal, C.; Yang, K. J. Phys. Chem. C 2014, 118, 24383.
    (31) Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B.; Petrozza, A.; Herz, L. M.; Snaith, H. J. Energy & Environmental Science 2014, 7, 3061.
    (32) Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nat. Photon. 2014, 8, 489.
    (33) Wang, F.; Ma, J.; Xie, F.; Li, L.; Chen, J.; Fan, J.; Zhao, N. Adv. Funct. Mater. 2016, 26, 3417.
    (34) Koh, T. M.; Krishnamoorthy, T.; Yantara, N.; Shi, C.; Leong, W. L.; Boix, P. P.; Grimsdale, A. C.; Mhaisalkar, S. G.; Mathews, N. J. Mater. Chem. A 2015, 3, 14996.
    (35) Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I. J. Am. Chem. Soc. 2016, 138, 3974.
    (36) Yang, Z.; Rajagopal, A.; Chueh, C. C.; Jo, S. B.; Liu, B.; Zhao, T.; Jen, A. K. Adv. Mater. 2016, 28, 8990.
    (37) Liang, K.; Mitzi, D. B.; Prikas, M. T. Chem. Mater. 1998, 10, 403.
    (38) Mitzi, D. B. Chem. Mater. 2001, 13, 3283.
    (39) Hao, F.; Stoumpos, C. C.; Guo, P.; Zhou, N.; Marks, T. J.; Chang, R. P.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 11445.
    (40) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897.
    (41) Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.
    (42) Chen, Q.; Zhou, H.; Hong, Z.; Luo, S.; Duan, H. S.; Wang, H. H.; Liu, Y.; Li, G.; Yang, Y. J. Am. Chem. Soc. 2014, 136, 622.
    (43) Yokoyama, T.; Cao, D. H.; Stoumpos, C. C.; Song, T. B.; Sato, Y.; Aramaki, S.; Kanatzidis, M. G. J. Phys. Chem. Lett. 2016, 7, 776.
    (44) Chueh, C. C.; Li, C. Z.; Jen, A. K. Y. Energy Environ. Sci. 2015, 8, 1160.
    (45) Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. Angew. Chem. Int. Ed. 2015, 54, 8208.
    (46) Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat. Commun. 2017, 8, 15218.
    (47) Saparov, B.; Sun, J. P.; Meng, W.; Xiao, Z.; Duan, H. S.; Gunawan, O.; Shin, D.; Hill, I. G.; Yan, Y.; Mitzi, D. B. Chem. Mater. 2016, 28, 2315.
    (48) Marshall, K. P.; Walton, R. I.; Hatton, R. A. J. Mater. Chem. A 2015, 3, 11631.
    (49) http://www.xpsfitting.com/2012/08/shake-up-structure.html.
    (50) Hao, F.; Stoumpos, C. C.; Chang, R. P.; Kanatzidis, M. G. J. Am. Chem. Soc 2014, 136, 8094.

    QR CODE