簡易檢索 / 詳目顯示

研究生: 陳姵吟
論文名稱: Single Molecule Spectroscopy Studies of the Conformational Structure and Fluorescence Properties of Poly(3-hexylthiophene) and Poly(9,9-dioctylfluorene) Isolated Chains
指導教授: 陳信龍
口試委員: 韋光華
陳壽安
陳俊太
廖建勛
Areefen Rasamesard
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 152
中文關鍵詞: 單分子光譜儀共軛高分子
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    共軛高分子廣泛應用於高分子太陽能電池與高分子發光二極體,其中常見的共軛高分子如poly(3-alkylthiophene)s (P3AT), Poly(3-hexylthiophene) (P3HT) 和poly(9,9-dioctylfluorene) (PFO)。 此論文主要為藉由單分子光譜儀探討單一共軛高分子鏈之構型與發光性質。
    對於 P3HT 共軛高分子,主要探討P3HT主鏈不同的regioregularity,包含regioregular 和 regiorandom P3HT (分別命名為rr-P3HT 和 ra-P3HT),其單一分子鏈之構型與發光性質受到不同溶劑性質之影響。 單一P3HT 高分子溶於polystyrene與tetrahydrofuran (THF) 或 toluene溶液中並且塗布成單分子薄膜。 ra-P3HT 單一高分子鏈因平均較短之共軛長度而呈現較高能量放光,然而rr-P3HT 單一高分子鏈因平均較長之共軛長度而呈現較低能量放光。藉由single molecules polarization modulation 的量測,rr-P3HT 單一高分子鏈當使用THF為溶劑時主要是呈現defect cylinder 結構,若使用toluene為溶劑則主要是呈現rod 結構。當使用toluene為溶劑時,由於toluene相對弱極性,使得高分子鏈在toluene中為減少高分子與溶劑之作用而提升高分子鏈段內部之排列。然而,不同溶劑的對ra-P3HT 單一高分子鏈之構型與發光性質無顯著影響。.
    在此論文研究中,我們也提出藉由在P3HT高分子鏈末端加上拉電子基團triazole (TAZ) 或 oxadiazole (OXD)來提升高分子鏈內部電子傳遞效率以提升高分子太陽能電池之原件效率。由單分子光譜儀研究結果顯示,當P3HT高分子鏈末端接上拉電子基團時,末端拉電子基團會與鄰近P3HT單體形成新的較低能階之物質,近而加速光激發之高分子內部電子傳遞效率。同時藉由量子模擬計算, 末端基團oxadiazole (OXD)與P3HT主鏈呈現較佳之共平面性,使得主鏈電子易delocalize至OXD末端基團,而triazole (TAZ)與P3HT主鏈較差之共平面性也大幅降低主鏈電子傳遞之末端基團之效率。
    此外,對於PFO高分子系統,藉由末端基團加上拉電子基團也可有效提升PFO主鏈之Cβ conformers之形成,透過單分子光譜儀對此現象進行探討,顯示末端基團之拉電子特性,可有效促進PFO主鏈上之Cβ conformers形成,與在巨觀薄膜所得之現象一致,隨著Cβ conformers形成的量變多,也同時增加PFO高分子在高分子發光二極體之元件效率。


    Table of Contents Abstract……….. II Table of Contents V List of Figures… IX List of Tables….. XIV CHAPTER 1 Introduction 1 1.1 Luminescent Conjugated Polymer 1 1.1.1 Energy Level of the Luminescent Conjugated Polymer 3 1.1.2 Absorption 3 1.1.3 Fluorescence 4 1.2 Application of Conjugated Polymers to Electronic Devices 9 1.2.1 Development of Polymer Light Emitting Diodes 9 1.2.2 Development of Polymer Solar Cells 10 1. 3 Application of Single Molecules Spectroscopy Technique 12 1.3.1 Application of Single Molecules Spectroscopy to Luminescent Conjugated Polymers 14 1.3.2 Single Molecule Spectroscopy Measurement on Different Types of Conjugated Polymers 15 1.3.2.1. MEH-PPV System 15 1.3.2.2 DOO-PPV system 18 1.3.2.3 PFO system 19 1.3.2.4 P3HT system 21 1.4 Motivation and Objectives of the Present Research 25 1.5 References 27 CHAPTER 2 Theoretical Background of Single Molecule Spectroscopy………………………………………………………………….……..32 2.1 Introduction of Single Molecule Spectroscopy (SMS) 33 2.2 Single Molecule Polarization Excitation Modulation 35 2.3 Fluorescence Lifetime 37 2.4 Photoinduced Electron Transfer (PET) 40 2.5Single Molecules Spectroscopy Measurement of the Luminescent Conjugated Polymer 42 2.6 References 44 CHAPTER 3 Experimental Setup 45 3.1 Confocal Microscope Setup 45 3.2 Single Chain Photoluminescence Spectrum Measurement 47 3.3 Single Chain Fluorescence Lifetime Measurement 49 3.4 Single Chain Excitation Polarization Modulation Experiment 50 3.5 References 51 CHAPTER 4 Conformation and Fluorescence Property of Poly(3-hexylthiophene) Isolated Chains Studied by Single Molecule Spectroscopy: Effects of Solvent Quality and Regioregularity 52 4.1 Introduction 52 4.2 Experimental Section 53 4.3 Results and Discussion 55 4.3.1 Determination of RR Values of P3HT Samples by NMR Spectroscopy 55 4.3.2 Conformation of Isolated P3HT Chains 57 4.3.3 Fluorescence Properties of The Isolated P3HT Chains 66 4.3.4 Correlation Between Conjugation Length and Fluorescence Lifetime 73 4.4 Summary 76 4.5 References 78 CHAPTER 5 Improving Photoinduced Intra-chain Electron Transfer in Single Chain Poly(3-hexylthiophene) by Endcapping with Electron Deficient Moieties: from Single Molecules to Solar Cell 80 5.1 Introduction 80 5.2 Experiment Section 82 5.2.1 Materials 82 5.2.2 Ensemble Absorption and Photoluminescence Measurement 83 5.2.3 Single Molecule Spectroscopic Measurements 83 5.2.4 Polymer Photovoltaic Cells (PVC) Fabrication and Performance Measurements (This part was conducted by Mr. Chen Chi Min) 84 5.3 Results and Discussion 87 5.3.1 Ensemble Absorption and Photoluminescence Spectra 87 5.3.2 Inverse Power Law Statistics for Fluorescence Blinking Analysis …………………………………………………………………..93 5.3.3 Delayed Fluorescence Lifetime Due to Forward and Backward Electron Transfer 100 5.3.4 Estimation of Modulation Depth 104 5.3.5 HOMO-LUMO Levels of Different Number of Oligomers 107 5.3.6 Optimized Conformation and Electron Density Distribution 112 5.3.7 Electron Transfer Mechanism from P3HT Endcapped System 115 5.3.8 Performance of Polymer Solar Cell (This part was conducted by Mr. Chen Chi Min) 117 5.4 Summary 119 5.5 References 121 CHAPTER 6 Cβ Conformer Formation of Poly(9,9-dioctylfluorene) Single Chain Facilitated by Endcapping with Electron Deficiency Moiety 124 6.1 Introduction 124 6.2 Experiment Section 126 6.2.1 Sample Preparation for Ensemble-Average Spectroscopic Measurements 126 6.2.2 Single Molecule Spectroscopy Measurements 127 6.3.1 Ensemble-Average UV Absorption and Photoluminescence Spectroscopic Measurements 129 6.3.2 Typical Single Chain Photoluminescence Spectra and the Method to Calculate Contents of Amorphous Emission 131 6.3.3 Histogram of the Content of Amorphous Emission 136 6.3.4 Single Chain Alignment Investigate by Histogram of Modulation Depth.. 138 6.3.5 Quantum Chemical Calculations for the Conformation of Oligofluorenes 140 6.4 Summary 143 6.5 References 144 CHAPTER 7 Overall Conclusion 146

    1. Chen, S.; Deng, L.; Xie, J.; Peng, L.; Xie, L.; Quli Fan ; Huang, W. Adv. Mater. 2010, 22, 5227-5239.
    2. Hameed, S.; Predeep, P.; M.R.Baiju. Rev. Adv. Mater. Sci 2010, 26, 30-42.
    3. Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Adv. Mater., 2007, 19, 1551–1566.
    4. Liu, F.; Gu, Y.; Jung, J. W.; Jo, W. H.; Russell, T. P. Polymer Physics, 2012, 50, 1018–1044.
    5. Valeur, B., In Molecular Fluorescence Principles and Applications, 2002.
    6. Wong, K. F.; Skaf, M. S.; Yang, C.-Y.; Rossky, P. J.; Bagchi, B.; Hu, D.; Ji Yu, a. P. F. B. J. Phys. Chem. B, 2001, 105, 6103-6107.
    7. R. Chang ; Hsu, J. H.; Fann, W. S.; Liang, K. K.; Chang, C. H.; Hayashi, M.; Yu, J.; Lin, S. H.; Chang, E. C.; Chuang, K. R.; Chen, S. A. Chemical Physics Letters, 2000 317 142–152.
    8. Yip, W.-T.; Hu, D.; Yu, J.; Bout, D. A. V.; Barbara, P. F. J. Phys. Chem. A, 1998, 102, 7564-7.
    9. Yu, J.; Hu, D.; Barbara, P. F. 2000, 289.
    10. Hu, D.; Yu, J.; Wong, K.; Bagchi, B.; Rossky, P. J.; Barbara, P. F. Nature 2000, 405, (6790), 1030-1033.
    11. Huser, T.; Yan, M.; Rothberg, L. J. PNAS 2000, 97, 11187–11191.
    12. Nguyen, T. Q.; Junjun Wu, V. D.; Schwartz, B. J.; Tolbert, S. H. Science, 2000 288.
    13. Wang, C. F.; White, J. D.; Lim, T. L.; Hsu, J. H.; Yang, S. C.; Fann, W. S.; Peng, K. Y.; Chen, S. A. Physical Review B 2003, 67, 035202.
    14. Huang, C. C.; Meng, H. F.; Ho, G. K.; Chen, C. H. Appiled Physics Letters 2004, 84, 1195-1197.
    15. Perepichka, D. F.; Perepichka, I. F.; Meng, H.; Wudl, F. Advanced Materials,2005, 17,2281-2305.
    16. Burroughes, J. H.; Bredley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature , 1990, 347, 539 - 541.
    17. Kuik, M.; Wetzelaer, G.-J. A. H.; Nicolai, H. T.; Craciun, N. I.; Leeuw, D. M. D.; Blom, P. W. M. Adv. Mater 2014, 26, 512-531.
    18. Paul W. M. Blom; Valentin D. Mihailetchi; L. Jan Anton Koster; Markov, D. E. Adv. Mater. 2007, 19, 1551–1566.
    19. Kallmann, H.; Pope, M. J. Chem. Phys., 1959, 30, 585.
    20. Benanti, T. L.; Venkataraman, D. Photosynthesis Research, 2006, 87, 73–81.
    21. Nagarjuna, G.; Venkataraman, D. Polymer Physics, 2012, 50, 1045–1056.
    22. Duong, D. T.; Walker, B.; Lin, J.; Kim, C.; Love, J.; Purushothaman, B.; Anthony, J. E.; Nguyen, T.-Q. Polymer Physics, 2012, 50, 1405–1413.
    23. Kaake, L. G.; Jasieniak, J. J.; Bakus, R. C.; Welch, G. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. J. Am. Chem. Soc., 2012, 134, 19828-19838.
    24. Kwon, S.; Park, J. K.; Kim, G.; Kong, J.; Bazan, G. C.; Lee, K. Adv. Energy Mater., 2012, 2, 1420–1424.
    25. Treat, N. D.; Shuttle, C. G.; Toney, M. F.; Hawker, C. J.; Chabinyc, M. L. J. Mater. Chem, 2011, 21, 15224-15231.
    26. Zhou, H.; Yang, L.; You, W. Macromolecules 2012, 45, 607-632.
    27. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudi, F. Science 1992, 258, 1474-1476.
    28. Yu, G.; Gao, J.; Hummelen, J. C.; Wudi, F.; Heeger, A. J. Science 1995 270 1789-1791.
    29. Liu, J.; Shi, Y.; Yang, Y. Adv. Funct. Mater. , 11, No. 6, December 2001, 11, 420-424.
    30. Dittmer, J. J.; Marseglia, E. A.; Friend, R. H. Advanced Materials 2000, 12, (17), 1270-1274.
    31. Beek, W. J. E.; Wienk, M. M.; Janssen, R. A. J. Advanced Materials 2004, 16, (12), 1009-1013.
    32. Kularatne, R. S.; Magurudeniya, H. D.; Sista, P.; Biewer, M. C.; Stefan, M. C. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51, 743-768.
    33. Wang, M.; Hu, X.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. J. Am. Chem. Soc., 2011, 133, 9638–9641.
    34. Price, S. C.; Stuart, A. C.; Yang, L.; Zhou, H.; You, W. J. Am. Chem. Soc. 2011, 133 (12), 4625–4631.
    35. Zou, Y.; Najari, A.; Berrouard, P.; Beaupre, S.; Aıch, B. R. d.; Tao, Y.; Leclerc, M. J. Am. Chem. Soc. 2010, 132, 5330–5331.

    36. Barbara, P. F.; Gesquiere, A. J.; Park, S.-J.; Lee, Y. J. Acc. Chem. Res 2005, 38, 602-610.
    37. Lupton, J. M. Adv. Mater. 2010, 22, 1689–1721.
    38. Bolinger, J. C.; Traub, M. C.; Brazard, J.; Adachi, T.; Barbara, P. F.; Bout, D. A. V. Acc. Chem. Res., 2012, 45 (11), 1992-2001.
    39. Chen, J. H.; Chang, C. S.; Chang, Y. X.; Chen, C. Y.; Chen, H. L.; Chen, S. A. Macromolecules 2009, 42 (4), 1306-1314.
    40. Li, Y. C.; Chen, C. Y.; Chang, Y. X.; Chuang, P. Y.; Chen, J. H.; Chen, H. L.; Hsu, C. S.; Ivanov, V. A.; Khalatur, P. G.; Chen, S. A. Langmuir 2009, 25 (8), 4668-4677.
    41. Liang, J.-J.; White, J. D.; Chen, Y. C.; Wang, C. F.; Hsiang, J. C.; Lim, T. S.; Sun, W. Y.; Hsu, J. H.; Hsu, C. P.; Hayashi, M.; Fann, W. S.; Peng, K. Y.; Chen, S. A. Phys. Rev. B 2006, 74, 085209
    42. Lim, T. S.; Hsiang, J. C.; White, J. D.; Hsu, J. H.; Fan, Y. L.; Lin, K. F.; Fann, W. S. Phys. Rev. B. 2007, 75, 165204 (1-9).
    43. Rassamesard, A.; Huang, Y. F.; Hsu Yang Lee; Lim, T. S.; Li, M. C.; White, J. D.; Hodak, J. H.; Osotchan, T.; Peng, K. Y.; Chen, S. A.; Hsu, J.-H.; Hayashi, O. M.; Fann, W. J. Phys. Chem. C 2009, 113, 18681-18688.
    44. White, J. D.; Hsu, J. H.; Fann, W. S.; Yang, S.-C.; Pern, G. Y.; Chen, S. A. Chemical Physics Letters, 2001, 338, 263-268.
    45. White, J. D.; Hsu, J. H.; Yang, S.-C.; Fann, W. S.; Pern, G. Y.; Chen, S. A. J. Chem. Phys 2001, 114, 3848.
    46. Ebihara, Y.; Vacha, M. J. Phys. Chem. B 2008, 112 (40), 12575-12578.
    47. Sun, W. Y.; Yang, S. C.; White, J. D.; Hsu, J. H.; K. Y. Peng; Chen, S. A.; Fann, W. Macromolecules 2005, 38, 2966-2973.
    48. Yu, Z. H.; Barbara, P. F. J. Phys. Chem. B 2004, 108, 11321-11326.
    49. Huser, T.; Yan, M. J. Photochem. Photobiol. A 2001, 144, 43-51.
    50. Adachi, T.; Brazard, J.; Chokshi, P.; Bolinger, J. C.; Ganesan, V.; Barbara, P. F. J. Phys. Chem. C 2010, 114 ( 48) 20896– 20902.
    51. Adachi, T.; Brazard, J.; Ono, R. J.; Hanson, B.; Traub, M. C.; Wu, Z.-Q.; Li, Z.; Bolinger, J. C.; Ganesan, V.; Bielawski, C. W.; Bout, D. A. V.; Barbara, P. F. J. Phys. Chem. Lett 2011, 2 ( 12), 1400– 1404.
    52. Vogelsang, J.; Brazard, J.; Adachi, T.; Bolinger, J. C.; Barbara, P. F. Angew. Chem. Int. Ed. 2011, 50 ( 10), 2257- 2261.
    53. Vogelsang, J.; Lupton, J. M. J. Phys. Chem. Lett. , 2012, 3, 1503-1513.
    54. Traub, M. C.; Lakhwani, G.; Bolinger, J. C.; Bout, D. V.; Barbara, P. F. J. Phys. Chem. B 2011, 115 ( 22) 9941- 9947.
    55. Becker, K.; Lupton, J. M. J. Am. Chem. Soc. 2006, 128 (19), 6468-6479.
    56. Becker, K.; Lupton, J. M. J Am Chem Soc. 2006, 128(19), 680-681.
    57. Lacroix, J. C.; Chane-Ching, K. I.; Maquère, F.; Maurel, F. J. Am. Chem. Soc. 2006, 128 (22), 7264-7276.
    58. Bout, D. A. V.; Yi, W.-T.; , D. H.; Dian-Kui Fu; Swager, T. M.; Barbara, P. F. Science 1997, 277, 1074-1077.
    59. Hu, D.; Yu, J.; Wong, K.; Bagchi, B.; Rossky, P. J.; Barbara, P. F. Nature 2000, 405, 1030-1033.
    60. Bounos, G.; Ghosh, S.; Lee, A. K.; Plunkett, K. N.; DuBay, K. H.; Bolinger, J. C.; Zhang, R.; Friesner, R. A.; Nuckolls, C.; Reichman, D. R.; Barbara, P. F. .J. Am. Chem. Soc. 2011, 133 ( 26), 10155- 10160.
    61. Scherf, U.; List, E. J. W. Advanced Materials, 7, , April, 2002, 14, 477-487.
    62. Neher, D. Macromolecular Rapid Communications 2001, 22, 1365-1385.
    63. Chen, S. H.; Chou, H. L.; Su, A. C.; Chen, S. A. Macromolecules 2004, 37 (18), 6833-6838.
    64. Winokur, M. J.; Slinker, J.; Huber, D. L. Phys. Rev. B 2003, 67, 184106.
    65. Hung, M. C.; Liao, J. L.; Chen, S. A.; Chen, S. H.; Su, A. J. Am. Chem. Soc. 2005, 127 (42), 14576-14577.
    66. Tsoi, W. C.; Charas, A.; Cadby, A. J.; Khalil, G.; Adawi, A. M.; Iraqi, A.; Hunt3, B.; Morgado, J.; Lidze, D. G. Advanced Functional Materials,2008, 18, 600-606.
    67. Knaapila, M.; Bright, D. W.; Stepanyan, R.; Torkkeli, M.; Almasy, L.; Schweins, R.; Vainio, U.; Preis, E.; Galbrecht, F.; Scherf, U.; Monkman, A. P. Phtsical Review E 2011, 83, 051803.
    68. Becker, K.; Lupton, J. M. J. Am. Chem. Soc. 2005, 127 (20), 7306-7307.
    69. Hayer, A.; Khan, A. L. T.; Friend, R. H.; Köhler, A. Physical Review B 2005, 71, 241302.
    70. Khan, A. L. T.; Sreearunothai, P.; Herz, L. M.; Banach, M. J.; Köhler, A. Phys. Rev. B 2004, 69, 085201
    71. Como, E. D.; Becker, K.; Feldmann, J.; Lupton, J. M. Nano Lett. 2007 7(10), 2993-8.
    72. Como, E. D.; Borys, N. J.; Strohriegl, P.; Walter, M. J.; Lupton, J. M. J. Am. Chem. Soc. 2011, 133 (11), 3690-3692.
    73. Como, E. D.; Scheler, E.; Strohriegl, P.; Lupton, J. M.; Feldmann, J. Appl Phys A 2009, 95, 61-66.
    74. Becker, K.; Lupton, J. M.; Feldmann, J.; Nehls, B. S.; Galbrecht, F.; Deqing Gao; Scherf, U. Adv. Funct. Mater 2006, 16, 364-370.
    75. Wang, H. L.; McBranch, D. W.; Klimov, V. I.; Helgeson, R.; Wudl, F. Chem. Phys. Lett. 1999, 315, 173-180.
    76. Hoichang Yang, T. J. S., Lin Yang,Kilwon CHo,Chang Y.Ryu,Zhenan Bao Adv. Funct. Mater. 2005, 15, 671-676.
    77. Mauer, R.; Kastler, M.; Laquai, F. Advanced Functional Materials, 2010, 20, 2085-2092.
    78. Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; McCulloch, I.; Ha, C.-S.; Ree, M. Nature Materials 2006, 5, 197 - 203.
    79. Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6, 153-161.
    80. Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16 (23), 4533-4542.
    81. FJ, H.; P, J.; EW, M.; AP., S. Chem Rev. 2005, 105(4), 1491-1546.
    82. Yang, X.; Loos, J. Macromolecules, 2007, 40 (5), 1353-1362.
    83. Huang, S. P.; Liao, J. L.; Tseng, H. E.; Jen, T. H.; Liou, J.-Y.; Chen, S. A. Synthetic Metals 2006, 156, 949-953.
    84. Richard, F.; Brochon, C.; Leclerc, N.; Eckhardt, D.; Heiser, T.; Hadziioannou, G. Macromol. Rapid Comm. 2008, 29, 885.
    85. Yang, C.; Lee, J. K.; Heeger, A. J.; Wudl, F. J. Mater. Chem. 2009, 19, 5416-5423.
    86. Palacios, R. E.; Barbara, P. F. J Fluoresc 2007, 17, 749-757.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE