簡易檢索 / 詳目顯示

研究生: 吳緻琳
論文名稱: 二氧化矽奈米粒子複合無溶劑雙離子液體電解質應用於染料敏化太陽能電池之研究
Highly Stable Quasi-solid-state Dye-sensitized Solar Cell Based on SiO2 Nanoparticles Solidifying Solvent-free Ionic Liquid Electrolytes
指導教授: 開執中
李欣芳
口試委員: 季昀
童永樑
丁志明
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 101
中文關鍵詞: 染料敏化電池二氧化矽
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染料敏化太陽能電池(Dye-sensitized Solar Cells, DSCs)的戶外應用長期受限於含有高揮發性有機溶劑之液態電解質的漏液與封裝問題。近年來,具高導電度、非揮發性與高熱穩定性之咪唑類(Imidazolium)室溫離子液體,被認為可用以取代一般液態電解質所使用之有機溶劑,得到更穩定的液態電解質。然而,離子液體的高黏度導致電解質中離子移動效率變差,因而降低導電度與DSCs元件之效率。在高黏度離子液體中摻入含惰性陰離子的低黏度離子液體所製得之無溶劑雙離子液體電解質,雖可大幅改善導電度,但對於漏液與封裝問題,仍需要低流動性電解質才可有效解決。本論文主要研究於無溶劑雙離子液體電解質中混摻入二氧化矽(SiO2)奈米顆粒,製備無溶劑奈米粒子型半固態電解質,期望藉由奈米顆粒的添加進一步改善無溶劑電解質之離子傳導機制,在降低電解質流動性的同時,亦可有效提升溶劑DSCs元件之光電轉換效率。
    實驗結果顯示,在入射光強度為100mW/cm2 的照射下,相較於未加入任何奈米顆粒時之光電轉換效率(2.86%),當SiO2奈米粒子於PMII/EMIDCA離子液體中添加量達2wt% 時,光電轉換效率可達 5.28 %,短路電流密度(Jsc)更由7.26mAcm−2大幅提升至12.46mAcm−2。電化學阻抗分析(EIS)顯示,SiO2奈米粒子的添加可有效降低無溶劑電解質與鉑對電極間的界面阻抗,進而提升Jsc。長效性能測試方面,添加2wt% SiO2奈米顆粒之無溶劑半固態電解質元件於60℃暗室下放置1000小時,其光電轉換效率仍維持初始效率之80%。


    總目錄 摘要 I Abstract II 誌謝 III 總目錄 V 圖目錄 X 表目錄 XIV 第一章 緒論 1 1-1前言 1 1-2太陽能電池簡介 2 1-2-1太陽能電池種類 2 1-2-2太陽能電池之結構與原理[4] 4 1-2-3太陽能電池發展 5 1-3研究目的與動機 6 第二章 文獻回顧 10 2-1 染料敏化太陽能電池 10 2-1-1 染料敏化太陽電池工作原理 10 2-1-2 染料敏化太陽電池基本結構 12 2-1-2-1 工作電極 12 2-1-2-2 染料 14 2-1-2-3 電解質 14 2-1-2-4 對電極 15 2-1-3 染料敏化太陽能電池元件光電特性 16 2-2 室溫離子液體(ionic liquid) 19 2-2-1 離子液體性質 19 2-3 烷基咪類離子液體染料敏化太陽電池中的應用 20 2-3-1 含有惰性陰離子的離子液體 21 2-3-2 含有功能化咪唑陽離子的離子液體 23 2-4 溫度效應對於染敏太陽電池整體的影響 24 2-5 添加奈米粒子於電解質對效率的影響 25 2-6 離子液體與高分子膠態電解質之長效性測試 26 第三章實驗步驟與原理 36 3-1 實驗流程 36 3-2 實驗藥品 37 3-2-1 導電玻璃基材清洗 38 3-2-2 TiO2光電極的製備 39 3-2-3 TiO2光電極浸泡染料 39 3-2-4 奈米粒子膠態電解質製備 40 3-2-5 電池組裝 40 3-3 儀器量測 40 3-4太陽電池光電效率分析 41 3-4-1光電效率測量條件 41 3-4-2光電轉換效率分析 42 3-4-3太陽電池光電效率分析方法 43 3-5掃描式電子顯微鏡(SEM) 43 3-6單一波長光電轉換效率(Incident Photon-to-Current Conversion Efficiency,IPCE) 44 3-7電解質電性分析 45 3-7-1 循環伏安法(Cyclic Voltammogram,CV) 45 3-8 DSC電學阻抗分析(Electrochemical Impedance Spectroscopy,EIS) 46 第四章 實驗結果與討論 54 4-1無溶劑雙離子液體電解質組成分析與效率量測 54 4-1-1 PMII/EMIDCA雙離子液體電解質組成比之影響分析 55 4-1-2 I2濃度對於PMII/EMIDCA雙離子液體電解質之影響分析 56 4-2 電池結構組成對於無溶劑雙離子液體DSCs之影響分析 59 4-2-1二氧化鈦工作電極結構影響分析 60 4-2-1-1 二氧化鈦光電極工作電極結構與型態分析 60 4-2-1-2 二氧化鈦工作電極厚度對光電效率之影響 61 4-2-1-3 TiCl4後處理光電極之光電轉換效率影響 61 4-2-2 染料特性影響分析 62 4-2-2-1 不同染料對於無溶劑雙離子液體DSCs之光電轉換效率影響分析 62 4-2-3 熱塑性塑膠墊片(Surlyn)厚度影響分析 63 4-2-3-1 熱塑性塑膠墊片厚度對PMII/EMIDCA離子液體光電轉換效率分析 63 4-3添加二氧化矽奈米粒子膠化無溶劑雙離子液體電解質製備半固態染料敏化太陽能電池分析 64 4-3-1 SiO2添加比例對於PMII/EMIDCA雙離子液體DSCs影響分析 64 4-3-1-1 SiO2添加比例影響之光電轉換效率分析 64 4-3-2 SiO2添加比例對於PMII/EMISCN雙離子液體DSCs影響分析 65 4-3-2-1 SiO2添加比例影響之光電轉換效率分析 65 4-4 添加二氧化矽奈米粒子膠化無溶劑雙離子液體電解質老化測試 66 第五章 結論與展望 91 第六章 未來研究方向 92 參考文獻 93

    [1] B. O’Reagan et al. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2,” Nature 353, 737, (1991)
    [2] F.Gao et al .“Enhance the Optical Absorptivity of Nanocrystalline
    TiO2 Film with High Molar Extinction Coefficient
    Ruthenium Sensitizers for High Performance
    Dye-Sensitized Solar Cells,” J. Am. Chem.Soc 130, 10720( 2008)
    [3] D. Shi et al .“New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes,”J. Phy. Chem112, 17046 (2008)
    [4] Handbook of Photovoltaic Science and Engineering, Ed. By Antonio Luque and Steven Hegedus, John Wiley & Sons,(2003)
    [5] R. Kern et al. “Dye-Sensitized Solar Cells: an Overview,”
    Electrochim. Acta, 47(2002)
    [6] A. Luque, S .Hegedus, Inc Net Library“ Handbook of Photovoltaic Science and Engineering”
    [7] M. Nazeeruddin et al. “Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes,” J.Am. Chem.Soc., 115, 6382 (1993)
    [8] M. Nazeeruddin et al. “Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells,” J. Am. Chem. Soc., 123,1613(2001)
    [9] C. Barbė et al. “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications,” J. Am. Ceram. Soc ., 80,1357(1997)
    [10] K. Hara et al. “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes ,” Sol .Energy Mater. Sol. Cell, 77, 89 (2003)
    [11] T. Horiuchi et al. “Highly efficient metal-free organic dyes
    for dye-sensitized solar cells ”, Journal of Photochemistry and Photobiology A: Chemistry 164 29–32(2004)
    [12] N. Papageorgiou et al. “The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications,” J. Electrochem. Soc., 143, 3099 (1996)
    [13] B. O’Regan et al. “Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL‘NCS/CuSCN: Initiation and Potential Mechanisms”, Chem. Mater 10, 1501 (1998)
    [14] U. Bach et al. “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”,Nature, 395, 583 (1998)
    [15] P.Wang et al., “A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells,”J. Phys. Chem. B, 107, 13280-13285 , (2003)
    [16] C. Longo et al., “Solid-state and flexible dye-sensitized TiO2 solar cells :a study by electrochemical impedeance spectroscopy,” J. Phys. Chem. B, 106, 5925 (2002)
    [17] A. Kay, M. Gratzel, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder,” Sol. Energy Mater. Sol. Cells .44, 99 (1996)
    [18] N. Cherepy et al., “Ultrafast electron injection: implications for a photoelectrochemical Cell utilizing an anthocyanin dye-sensitized TiO2 nanocrystalline electrode,” J. Phys. Chem. B, 101, 9342 (1997)
    [19] M. Gratzel et al., “The artificial leaf, molecular photovoltaics achieve efficient generation of electricity from sunlight,” Chem. Rev., 111, 167(1991)
    [20] J. Desilvestro et al., “Highly efficient sensitization of titanium dioxide,” J. Am, Chem. Soc, 107, 2988(1985)
    [21] C. Barbe et al., “Nanocrystalline titanium oxide electrodes for photovoltaic applications,”J. Am. Ceram. Soc,80,3157(1997)
    [22] K.Hara et al., “Effect of Additives on the Photovoltaic Performance of Coumarin-Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” Langmuir 20, 4205-4210 (2004)
    [23] K.Hara et al., “Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes ” Sol. Energy Mater. Sol. Cells 77, 89-103 (2003)
    [24] K.Hara et al., “Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells”
    New J. Chem 27, 783–785(2003)
    [25] M. Gratzel et al., “ Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”Chem 44, 6841-6851 (2005)
    [26] P. Wang et al., “A High Molar Extinction Coefficient Sensitizer for Stable Dye-Sensitized Solar Cells” M. J. Am. Chem. Soc 127, 808-809 (2005)
    [27] Yiming et al., “ Dye-Sensitized Solar Cells with a High Absorptivity Ruthenium Sensitizer Featuring a 2-(Hexylthio)thiophene Conjugated Bipyridine”P. Chem. 113 (15), 6290–6297(2009)
    [28] J. Wu et al., “ Progress on the electrolytes for dye-sensitized solar cells” P.A. Chem. 80(11), 2241–2258(2008)
    [29] K. Hara, et al., “Dye-Sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium(II) Phenanthroline Complex Photosensitizers”Sol. Energy Mater. Sol. Cells 70, 151-161 (2001)
    [30] S. Y. Huang et al., “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells”J. Phys. Chem. B 101, 2576-2582 (1997)
    [31] U.Wendy et al., “Hybrid Nanorod-Polymer Solar Cells ” Science 295, 2425-2427 (2002)
    [32] D. Gebeyehu et al., “Solid-state organicyinorganic hybrid solar cells based on conjugated polymers and dye-sensitized TiO2 electrodes ” Thin Solid Films 403 –404 (2002)
    [33] T.Takenobu et al., “Mott-Hubbard transition in alkali ammonia fullerides” Synth. Met 121, 1573-1574 (2001)
    [34] U. Bach et al., “Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies”Nature 395, 583 (1998)
    [35] K. Tennakone et al., “A dye-sensitized nano-porous solid-state photovoltaic cell ” Semicond. Sci. Technol. 10, 1689 (1995).
    [36] G. Kumara et al., “Dye-sensitized solar cell with the hole collector
    p-CuSCN deposited from a solution in n-propyl sulphide ”Sol.Energy Mater. Sol. Cells 69, 195 (2001).
    [37] O’Regan et al., “A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN: Analysis of Pore Filling and IV Characteristics ” Chem. Mater. (2002).
    [38] O’Regan et al., “Charge Transport and Recombination in a Nanoscale Interpenetrating Network of n-Type and p-Type Semiconductors: Transient Photocurrent and Photovoltage Studies of TiO2/Dye/CuSCN Photovoltaic Cells” J. Phys. Chem. B , 108, 4342-4350(2004)
    [39] E. Stathatos et al., “ Quasi-solid-state dye-sensitized solar cells employing nanocrystalline TiO2 films made at low temperature ” Solar Energy Materials & Solar Cells 92, 1358–1365 (2008)
    [40] Wanchun Xiang et al., “ In situ quaterizable oligo-organophosphazene electrolyte with modified nanocomposite SiO2 for all-solid-state dye-sensitized solar cell ”Electrochimica Acta 54,4186–4191 (2009)
    [41] Y. Yanga et al., “ Improved stability of quasi-solid-state dye-sensitized solar cell based on poly (ethylene oxide)–poly (vinylidene fluoride) polymer-blend electrolytes ”Journal of Power Sources 185 ,1492–1498(2008)
    [42] Y.Lee et al., “ A hybrid PVDF-HFP/nanoparticle gel electrolyte for dye-sensitized solar cell applications ”Nanotechnology 19,455201 (2008)
    [43] P.Wang et al., “Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells, ” J. Am. Chem. Soc 125, 1166-1167 (2003)
    [44] A. Zaban et al., “Internal reference electrode in dye sensitized solar cells for three-electrode electrochemical characterizations,” J. Phys. Chem. B , 107 ,6022-6025(2003)
    [45] I. Kiyoaki et al., “ High-performance carbon counter electrode for dye-sensitized solar cells Kohshin Takahashi,”Solar Energy Materials & Solar Cells 79, 459–469(2003)
    [46] M.Wu et al., “ Low-cost dye-sensitized solar cell based on nine kinds of carbon counter electrodes,” Energy Environ. Sci., 4, 2308–2315(2011)
    [47] J. Nelson, “The Physics of Solar Cells”.
    [48] 莊嘉琛,太陽能工程-太陽電池篇,全華科技圖書股份有限公司(1997)
    [49] N. Park et al., “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells,”J. Phys. Chem. B , 104, 8989-8994(2000)
    [50] S. Nakade et al., “Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Sol Cells,”J. Phys. Chem. B, 106, 10004-10010(2002)
    [51] Perera et al., “ A solar cell sensitized with three different dyes,”J. Sol. Energy Mater. Sol. Cells 85, 91-98 (2005)
    [52] Y. Liu et al., “ Investigation of influence of redox specieson the interfacial energetics of a dye-sensitized naoporous TiO2 solar cell,”Sol. Energy Mater. 55, 267-281 (1998)
    [53] J.Henry et al., “ Light-Enhanced Charge Mobility in a Molecular Hole Transporter,”Physical Review Letters. 98, 177402 (2007)
    [54] Kawano et al., “Equilibrium potentials and charge transport of an I2/I3- redox couple in an ionic liquid,”Chem.Commun.,330-331, (2003)
    [55] Wang et al., “Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells,”J.am.Chem.Soc.,125:1166-1167, (2003)
    [56] Wang et al., “A Binary Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells,” Chem.Mater.,16,2964-2696 , (2004)
    [57] Wang et al., “A solvent-Free, SeCN- / (SeCN)3- Based Ionic Liquid Electrolyte for High-Efficiency Dye-Sensitized Solar Cells,” J. Am. Chem. Soc, 126: 7164-7165, (2004)
    [58] Kuang et al., “Stable Mesoscopic Dye-Sensitized Solar Cells Based on Tetracyanoborate Ionic Liquid Electrolyte ,”JACL .128, ,24, 7733 (2006)
    [59] Kuang et al., “Stable, High-Efficiency Ionic-Liquid-Based Mesoscopic Dye-Sensitized Solar Cells,” small, 3(12): 2094 – 2102, (2007)
    [60] Kawano et al., “High performance dye-sensitized solar cells using ionic liquids as their electrolytes,” Journal of Photochemistry and Photobiology A: Chemistry, 164,87-92. , (2004)
    [61] Fredin et al., “On the Influence of Anions in Binary Ionic Liquid Electrolytes for Momolthic Dye-Sensitized Solar Cells,” J. Phys. Chem. C.111, 13261-13266 (2007)
    [62] Fellicien et al., “Influence of Ionic Liquids Bearing Functional Groups in Dye-Sensitized Solar Cells,” Inorganic Chemistry, 45:1585-1590 (2006)
    [63] Fei et al., “A Supercooled Imidazolium Iodide Ionic Liquid as a Low-Viscosity Electrolyte for Dye-Sensitized Solar Cells,” Inorganic Chemistry, 45(26):10407-10409(2006)
    [64] Wang et al., “Ionic liquid electrolytes based on 1-vinyl-3-alkylimidazolium iodides for dye-sensitized solar cells,” Solar Energy Materials &Solar Cells,92,600-666. (2008)
    [65] Yamanka et al., “Dye-Sensitized Solar Cells Using Imidazolium-Type Ionic Liquid Crystal Systems as Effective Electrolytes,” J. Phys. Chem. B, 111(18): 4763-4769( 2007)
    [66] Yang et al., “High-Temperature and Long-Term Stable Solid-State Electrolyte for Dye-Sensitized Solar Cells by Self-assembly,”Chem. Mater., 18(22) ,5177( 2006)
    [67] Berginc et al., “The effect of temperature on the performance of dye-sensitized solar cells based on a propyl-methyl-imidazolium iodide electrolyte,” Solar Energy Materials & Solar Cells 91, 821–828(2007)
    [68] Berginc et al. , “Ionic liquid-based electrolyte solidified with SiO2 nanoparticles for dye-sensitized solar cells, “Thin Solid Films 516 ,4645–4650 (2008)
    [69] Wang et al., “A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte ,”nature materials, 2 (2003)
    [70] Yanagida et al. , “Dye-Sensitized Solar Cells Using Nanocomposite Ion-gel,” Fujikura Tech. Rev. 59 (2005)
    [71] T. Asano et al. , “Electrochemical Properties of Dye-Sensitized Solar Cells Fabrication with PVDF-Type Polymeric Solid Electrolytes,” Journal of Photochemistry and Photobiology A: Chemistry, 164, 1-3, 111(2004)
    [72] Xia et al., “A novel quasi-solid-state dye-sensitized solar cell based
    on monolayer capped nanoparticles framework materials ,”J .Mater. Sci ,42 ,6412–6416(2007)
    [73] Kubo et al., “Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator,” Chem. Commun. , 374–375(2002)
    [74] Shi et al., “New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes ,”J. Phys. Chem. C, 112, 44(2008)
    [75] M.Toivola et al. “Nanostructured dye solar cells on flexible substrates-Review, ” Int.J.Energy Res 33:1145-1160(2009)
    [76] E. Barsoukov et al .“Impedance Spectroscopy: Theory, Experiment, and Applications,” Wiley-Interscience (2005).
    [77] 汪建民,杜正恭,材料分析 中國材料科學學會1998
    [78] Y.Chi et al. “Ruthenium(II) Sensitizers with Heteroleptic Tridentate Chelates forDye-Sensitized Solar Cells,” Angew. Chem. Int. Ed, 50, 1 –6(2011)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE