研究生: |
吳書瑋 Wu, Shu-Wei |
---|---|
論文名稱: |
利用PTSim建立林口長庚醫院擾動式質子治療機蒙地卡羅模擬系統 Application of the PTSim Monte Carlo Simulation Framework for CGMH Proton Wobbling Beamline |
指導教授: |
董傳中
Tung, Chuan-Jong |
口試委員: |
莊克士
Chuang, Keh-Shih 陳拓榮 Chen, Tou-Rong 李宗其 Lee, Chung-Chi 趙自強 Chao, Tsi-Chian |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 質子治療 、蒙地卡羅模擬 、組織非均質性 、射程調節 |
外文關鍵詞: | Tissue Heterogeneity, Range Shifting, Geant4, PTSim |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將利用PTSim建立林口長庚醫院質子治療中心第二間治療室(PG2)蒙地卡羅機頭模擬系統並著重於擾動式技術(Wobbling)及漸層堆積法(LS)的初始質子射束參數最佳化。蒙地卡羅模擬系統建立需要完整的機頭組件建模及初始射束參數調整,經由改變蒙地卡羅初始入射射束參數使其所計算的深度劑量分佈與實際量測吻合。而深度劑量分佈評估則會採用一系列的布拉格尖峰特性指標,如:射程(R80)、布拉格峰尖峰寬度(FWHM)及尖峰後劑量衰減距離(W80-20%)、尖峰劑量與入射點劑量的比值(PE-Ratio)。而此套系統將會尋找70至230 MeV質子射束在三種不同射束掃描半徑下的最佳化初始平均能量及能譜分佈。在各個能量射束不同掃描半徑下,其最佳化參數所計算出來的深度劑量分佈可發現R80、FWHM及W80-20%和實際量測相比最大差異皆小於0.884 mm,而PE-ratio最大差異也僅0.144,皆低於臨床量測誤差,因此本研究已成功地完成蒙地卡羅最佳化參數調整。
此外,本研究也探討利用微型降能器進行射程調節(Range shift)對於射束特性的影響。在臨床治療計畫系統中,此方法將會忽略穿過降能器後的能譜分佈用以計算人體體內劑量分佈。從ΔFWHM及%FWHM的趨勢來看,微型降能器的厚度將會明顯改變能譜分佈,而表面劑量(ΔDent)也有顯著的差異。因此當臨床需利用微型降能器進行射程調節時需要特別注意,尤其是使用較厚的微型降能器。
而人體組織非均質性對於質子射束射程的影響,在本研究主要探討兩個影響劑量變化因素:物質密度及其化學組成成分。根據實驗結果顯示,密度的影響較為顯著而物質化學組成影響相對較小,而當物質的Z/A值和其他物質差異過大時則會增加劑量差異。此外,當各物質中的深度劑量分佈需做射程修正時,使用電子密度能提供較好的修正效果。
In this study, we use PTSim (Particle Therapy Simulation) to develop a Monte Carlo simulation system for wobbling nozzle with layer stacking (LS) technique in Chang Gung Memorial Hospital (CGMH). A Monte Carlo simulation system of proton facility for clinical irradiation involves several physical components, like beam scatterer, ion chamber, collimator, range modular, beam modifier, and water phantom/CT image-based phantom. In addition, the incident particle parameters for Monte Carlo need to be optimized by comparing simulated depth doses with those of measurements using evaluation indices including range (R80), the width of Bragg peak (FWHM), distal dose falloff (W80-20%) and peak-to-entrance ratio (PE-Ratio). Proton depth doses of 70 to 230 MeV with three wobbling radius modes (S, M, L) for incident particle mean energy and energy spectrum spread were optimization. Good agreement between simulation and measurements was achieved. For all beam energy and wobbling radius, the maximum difference of R80, FWHM and W80-20% were less than 0.884 mm, and PE-Ratio maximum difference were under 0.144 in this study.
Besides, we also evaluated the impacts of fine degraders on proton beam quality. According to the results in this study, the trend of ΔFWHM and %FWHM demonstrated the fine degrader thickness may cause significant energy straggling effects. Moreover, the ΔDent also show the significant discrepancy, especially in the thicker fine degrader. Finally, the tissue heterogeneity effects may cause significant range variation. In this study, two major influencing factors of range perturbation had been investigated: the mass density and chemical composition. The density contribution was more significant, and the chemical composition was less significant unless the Z/A was very different, such as for cortical bone and air. If density scaling was applied, the electron density was a better factor than mass density for range scaling.
1. Martin CJ, Sutton DG. "Practical Radiation Protection in Health Care". OXFORD university2002.
2. Laney TFD, Kooy HM. "Proton and Charged Particle Radiotherapy". Lippincott Williams & Wilkins; 2008.
3. Paganetti H, Bortfeld T. “Proton Beam Radiotherapy - The State of the Art”. Massachusetts General Hospital, Boston, MA, USA.
4. Wilson RR. Radiological use of fast protons. Radiology. 1946;47(5):487-491.
5. Levy RP, Fabrikant JI, Frankel KA, et al. Heavy-Charged-Particle Radiosurgery of the Pituitary Gland: Clinical Results of 840 Patients. Stereotactic and Functional Neurosurgery. 1991;57(1-2):22-35.
6. PTCOG. https://www.ptcog.ch/.
7. Aso T, Kimura A, Tanaka S, et al. Verification of the Dose Distributions With GEANT4 Simulation for Proton Therapy. IEEE Transactions on Nuclear Science. 2005;52(4):896-901.
8. Cirrone GAP, Cuttone G, Guatelli S, et al. Implementation of a new Monte Carlo-GEANT4 Simulation tool for the development of a proton therapy beam line and verification of the related dose distributions. IEEE Transactions on Nuclear Science. 2005;52(1):262-265.
9. Kim A, Kim JW, Hahn I, Schreuder N, Farr J. Simulations of Therapeutic Proton Beam Formation with GEANT4. Journal of the Korean Physical Society. 2005;47(2):5.
10. Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2003;506(3):250-303.
11. Akagi T, Aso T, Faddegon B, et al. The PTSim and TOPAS Projects, Bringing Geant4 to the Particle Therapy Clinic. Progress in Nuclear Science and Technology. 2011;2:6.
12. Aso T. Geant4 Medical Application. https://wiki.kek.jp/display/g4med/PTSIM. Accessed Nov 23, 2012.
13. Saitoh A, Kimura A, Tanaka S, Sasaki T. gMocren: High-quality volume visualization tool for Geant4 simulation. Paper presented at: IEEE Nuclear Science Symposium Conference Record2007.
14. Kimura A, Hasegawa K, Saitoh A, Tanaka S. gMocren: Visualization software for Monte Carlo simulators for radiotherapy. Journal of Advanced Simulation in Science and Engineering. 2015;2(1):45-62.
15. A.Kimura, K.Hasegawa, A.Saitoh, S.Tanaka, JST. gMocren -- a volume visualizer for Geant4 medical simulation.
16. Perl J, Shin J, Schumann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Medical physics. 2012;39(11):6818-6837.
17. Siebers JV, Keall PJ, Nahum AE, Mohan R. Converting absorbed dose to medium to absorbed dose to water for Monte Carlo based photon beam dose calculations. Physics in Medicine & Biology. 2000;45(4):983.
18. Dogan N, Siebers JV, Keall PJ. Clinical comparison of head and neck and prostate IMRT plans using absorbed dose to medium and absorbed dose to water. Physics in Medicine & Biology. 2006;51(19):4967.
19. Chetty IJ, Curran B, Cygler JE, et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Medical physics. 2007;34(12):4818-4853.
20. Jiang H, Seco J, Paganetti H. Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations. Medical physics. 2007;34(4):1439-1449.
21. Paganetti H. Dose to water versus dose to medium in proton beam therapy. Phys Med Biol. 2009;54(14):4399-4421.
22. Wu SW, Tung CJ, Lee CC, Fan KH, Huang HC, Chao TC. Impact of the material composition on proton range variation – A Monte Carlo study. Radiation Physics and Chemistry. 2015;116:199-202.
23. Lin MJ. Determination of optimal PTSim Monte Carlo simulation parameters for Chang Gung Memorial Hospital (CGMH) proton wobbling nozzles: Department of Medical Imaging and Radiological Sciences, Chang Gung University; 2014.
24. Breuer H, Smit BJ. Proton Therapy and Radiosurgery. Berlin, Heidelberg: Springer; 2000.
25. Moliere G. Theorie der Streuung schneller geladener Teilchen II Mehrfach-und Vielfachstreuung. In. Zeitschrift für Naturforschung A. Vol 31948:78.
26. Goudsmit S, Saunderson JL. Multiple Scattering of Electrons. Physical Review. 1940;57(1):24-29.
27. Lewis HW. Multiple Scattering in an Infinite Medium. Physical Review. 1950;78(5):526-529.
28. Physics Reference Manual Release 10.4. Geant4 Collaboration; 2017.
29. Bethe HA. Moliere's Theory of Multiple Scattering. Physical Review. 1953;89(6):1256-1266.
30. Gottschalk B. On the scattering power of radiotherapy protons. (0094-2405 (Print)).
31. Highland VL. Some practical remarks on multiple scattering. Nuclear Instruments and Methods. 1975;129(2):497-499.
32. Wu SW, Chao TC, Tung CJ, Lin MH, Lee CC. MLC mediated beam hardening effects in IMRT. Radiation Measurements. 2011;46(12):1989-1992.
33. Paganetti H, Jiang H, Y Lee S, Kooy H. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility. Vol 312004.
34. Su SM. Commissioning PTSIM Monte Carlo Technique for the Proton Wobbling Nozzle of the Chang Gung Memorial Hospital (CGMH), Chang Gung University; 2017.
35. Harald P, Hongyu J, Katia P, Roelf S, Martijn E. Clinical implementation of full Monte Carlo dose calculation in proton beam therapy. Physics in Medicine & Biology. 2008;53(17):4825.
36. NIST. PSTAR-NIST. https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html.
37. Tissue Substitutes in Radiation Dosimetry and Measurement, ICRU report, No 44. International Commission on Radiation Units and Measurements; 1989.
38. Radiation quantities and units, ICRU Report, No 33. International Commission on Radiation Units and Measurements; 1980.
39. Snyder WS, Cook MJ, Nasset ES, Karhausen LR, Howells GP, Tipton IH. Report of the Task Group on Reference Man, ICRP Report, No 23. International Commission on Radiotogical Protection 1974.
40. Lee CC, Lee YJ, Tung CJ, Cheng HW, Chao TC. MCNPX simulation of proton dose distribution in homogeneous and CT phantoms. Radiation Physics and Chemistry. 2014;95(Supplement C):302-304.