簡易檢索 / 詳目顯示

研究生: 洪瑜伶
Hung, Yu-Ling
論文名稱: 熱活化延遲螢光材料於雙客體螢光元件之應用
Thermally Activated Delayed Fluorescence Materials as Assistant Dopants in Organic Electroluminescent Devices
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 陳秋炳
Chen, Cheu-Pyeng
周鶴修
Chou, Ho-Hsiu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 116
中文關鍵詞: 熱活化延遲螢光材料雙客體系統有機電致發光元件
外文關鍵詞: Thermally Activated Delayed Fluorescence Materials, Double-dopant systems, Organic Electroluminescent Devices
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們將熱活化延遲螢光材料2BPy-mDTC及BPy-p3C以10-20 %的濃度摻雜於螢光元件的發光層,稱為輔助型客體(Assistant dopant),並搭配低摻雜濃度(≤ 2 %)的一般螢光材料作為發光客體(Emitter dopant),在此雙客體系統中,利用輔助型客體捕捉三重態激子經由逆向系統間跨越回到單重態的方式,增加可放光的單重態激發子之數量,再透過Förster resonance energy transfer (FRET)將能量傳遞至發光客體,藉此高效運用激子的機制達到提升元件效率之目的。文中設計的四組雙客體系統皆用mCBP作為分散濃度的主體(Host),第一組2BPy-mDTC搭配C545T的綠色螢光元件與第二組BPy-p3C搭配TBPe的藍色螢光元件,其外部量子效率分別高達28.5 %及14.0 %,相較未引入輔助型客體的各項元件表現皆有翻倍的增長。第三組引入本實驗室吳奕靚開發之具有三重態-三重態自我焠熄(Triplet-triplet annihilation, TTA)的材料OCzSSO作為發光客體,並由元件非其放光推測未發生FRET歸因於輔助型客體之放光光譜與發光客體之吸收光譜的極低光譜重疊度,且即便提高濃度仍未發生Dexter energy transfer。第四組則利用與BPy-p3C相異光色的TTPA,結果顯示引入輔助型客體使元件各項表現皆有大幅增長,並提升元件光色之色純度,上述結果充分突顯熱活化延遲螢光材料應用於雙客體系統之必要性。


    In this thesis, we demonstrate a route for triplet harvesting by utilizing thermally activated delayed fluorescence (TADF) molecules as assistant dopants that provide efficient transfer path for not only singlet but also triplet electrically generated excitons from them to the fluorescence emitters. In these four double-dopant systems, we use mCBP as a wide-energy gap host, 2BPy-mDTC and BPy-p3C as TADF-assistant dopants and C545T, TBPe, OCzSSO and TTPA as fluorescence emitter dopants. First, we report the green and blue fluorescence-based OLEDs that realized external quantum efficiency as high as 28.5 and 14.0 % by using C545T and TBPe as emitter dopants, respectively. Moreover, we use OCzSSO to testify the absence of Dexter energy transfer between the triplets of assistant dopants and emitter dopants, and to confirm that the poor performance of Förster resonance energy transfer (FRET) is attributed to the small spectral overlap between two dopants. In the last part, we replace TBPe with TTPA, which emission color is different from BPy-p3C for preliminary test, and the results also show an improvement in efficiency, color purity and emission intensity after introducing the assistant dopant. Therefore, we summarized that the cascade energy transfer scheme using TADF assistant dopants and fluorescent emitters will be the promising OLEDs devices architecture with outstanding performance.

    摘要 I Abstract III 目錄 V 表目錄 VII 圖目錄 IX 材料名稱對照表 XIV 第一章 緒論 1 第一節 有機電致發光的發展演進 1 第二節 螢光與磷光 5 第三節 OLED元件結構及其發光原理 9 第四節 主、客體摻雜系統中的能量轉移機制 12 第五節 OLED元件的發光效率 17 第六節 OLED元件的壽命 20 第二章 熱活化延遲螢光輔助型客體材料於螢光元件之應用 23 第一節 前言與研究動機 23 第二節2BPy-mDTC與BPy-p3C物理性質之探討 31 2.2.1 光物理性質 31 2.2.2 最高填滿軌域(HOMO)與最低未填滿軌域(LUMO)之測量 37 2.2.3 主、客體材料能量轉移之探討 40 第三節 熱活化延遲螢光輔助型客體材料於螢光元件之應用 47 2.3.1 結構之最佳化 47 2.3.1.1 2BPy-mDTC於雙客體螢光元件之應用 50 2.3.1.2 BPy-p3C於雙客體螢光元件之應用 65 2.3.2 雙客體系統能量傳遞機制之探討與結果檢視 91 2.3.3 摻雜系統中延遲螢光之探討 103 第四節 結論 106 參考文獻 108 附錄 112

    1.Tung, Y.-J.; Ngo, T.; Hack, M.; Brown, J.; Koide, N.; Nagara, Y.; Kato, Y.; Ito, H., SID Symposium Digest of Technical Papers 2004, 35, 48-51.
    2.Pope, M.; Kallmann, H. P.; Magnante, P., The Journal of Chemical Physics 1963, 38, 2042-2043.
    3.Yasunori, K.; Nobutoshi, A.; Shin-ichiro, T., Japanese Journal of Applied Physics 1999, 38, 5274.
    4.Sugimoto, T.; Fukutani, K., Nat Phys 2011, 7, 307-310.
    5.Shi, J.; Tang, C. W., Appl. Phys. Lett. 2002, 80, 3201-3203.
    6.Li, M.; Li, W.; Su, W.; Zang, F.; Chu, B.; Xin, Q.; Bi, D.; Li, B.; Yu, T., Solid-State Electronics 2008, 52, 121-125.
    7.Suzuki, K.; Seno, A.; Tanabe, H.; Ueno, K., Synth. Met. 2004, 143, 89-96.
    8.Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E., Appl. Phys. Lett. 2003, 83, 3818-3820.
    9.Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E., Chem. Mater. 2004, 16, 4743-4747.
    10.Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T., Appl. Phys. Lett. 1995, 67, 3853-3855.
    11.Goosens, M.; Heliotis, G.; Turnbull, G. A.; Ruseckas, A.; Lawrence, J. R.; Xia, R.; Bradley, D. D. C.; Samuel, I. D. W. In Semiconducting polymer optical amplifiers, 2005, 593706-593709.
    12.Iqbal, A.; Arslan, S.; Okumus, B.; Wilson, T. J.; Giraud, G.; Norman, D. G.; Ha, T.; Lilley, D. M. J., Proceedings of the National Academy of Sciences 2008, 105, 11176-11181.
    13.VanBeek, D. B.; Zwier, M. C.; Shorb, J. M.; Krueger, B. P., Biophys. J. 2007, 92, 4168-4178.
    14.Chou, H.-H.; Chen, Y.-H.; Hsu, H.-P.; Chang, W.-H.; Chen, Y.-H.; Cheng, C.-H., Adv. Mater. 2012, 24, 5867-5871.
    15.Chou, P. Y.; Chou, H. H.; Chen, Y. H.; Su, T. H.; Liao, C. Y.; Lin, H. W.; Lin, W. C.; Yen, H. Y.; Chen, I. C.; Cheng, C. H., Chem. Commun. 2014, 50, 6869-6871.
    16.Baldo, M. A.; O’Brien, D. F.; Thompson, M. E.; Forrest, S. R., Physical Review B 1999, 60, 14422-14428.
    17.Uchida, M.; Adachi, C.; Koyama, T.; Taniguchi, Y., J. Appl. Phys. 1999, 86, 1680-1687.
    18.Suzuki, H.; Hoshino, S., J. Appl. Phys. 1996, 79, 8816-8822.
    19.Lamansky, S.; Kwong, R. C.; Nugent, M.; Djurovich, P. I.; Thompson, M. E., Org. Electron. 2001, 2, 53-62.
    20.Li, J.; Liu, D.; Li, Y.; Lee, C.-S.; Kwong, H.-L.; Lee, S., Chem. Mater. 2005, 17, 1208-1212.
    21.Lee, J.-H.; Lin, T.-C.; Liao, C.-C. In Blue organic light-emitting device with low driving voltage and high current efficiency, 2005, 138-144.
    22.Ho, Y.-H.; Lin, T.-C.; Wu, C.-F.; Lee, J.-H. In High-efficiency and long-lifetime fluorescent blue organic-emitting device, 2006, 633303-633303-7.
    23.Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R., Appl. Phys. Lett. 1999, 75, 4-6.
    24.Baldo, M. A.; O'brien, D.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.; Forrest, S., Nature 1998, 395, 151-154.
    25.Soichi, W.; Nobuhiro, I.; Junji, K., Japanese Journal of Applied Physics 2007, 46, 1186.
    26.Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lussem, B.; Leo, K., Nature 2009, 459, 234-238.
    27.Seo, S.; Tokuda, A.; Nakamura, Y., Organic light-emitting device and light-emitting apparatus comprising the device. Google Patents: 2003.
    28.D’Andrade, B. W.; Baldo, M. A.; Adachi, C.; Brooks, J.; Thompson, M. E.; Forrest, S. R., Appl. Phys. Lett. 2001, 79, 1045-1047.
    29.Iwakuma, T.; Aragane, T.; Hironaka, Y.; Fukuoka, K.; Ikada, H.; Hosokawa, C.; Kusomoto, T., SID Symposium Digest of Technical Papers 2002, 33, 598-601.
    30.Hosokawa, C.; Fukuoka, K.; Kawamura, H.; Sakai, T.; Kubota, M.; Funahashi, M.; Moriwaki, F.; Ikeda, H., SID Symposium Digest of Technical Papers 2004, 35, 780-783.
    31.Kawamura, M.; Kawamura, Y.; Mizuki, Y.; Funahashi, M.; Kuma, H.; Hosokawa, C., SID Symposium Digest of Technical Papers 2010, 41, 560-563.
    32.Helfrich, W.; Schneider, W. G., The Journal of Chemical Physics 1966, 44, 2902-2909.
    33.Kondakov, D. Y., Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 373, 2044.
    34.Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi, Z.; Aldred, M. P., Chem. Soc. Rev. 2017, 46, 915-1016.
    35.Hu, D.; Yao, L.; Yang, B.; Ma, Y., Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2015, 373, 2044.
    36.Li, W.; Pan, Y.; Yao, L.; Liu, H.; Zhang, S.; Wang, C.; Shen, F.; Lu, P.; Yang, B.; Ma, Y., Advanced Optical Materials 2014, 2, 892-901.
    37.Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W., Adv. Mater. 2014, 26, 7931-7958.
    38.Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C., Adv. Mater. 2009, 21, 4802-4806.
    39.Tanaka, H.; Shizu, K.; Miyazaki, H.; Adachi, C., Chem. Commun. 2012, 48, 11392-11394.
    40.Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Nature 2012, 492, 234-238.
    41.Tanaka, H.; Shizu, K.; Nakanotani, H.; Adachi, C., Chem. Mater. 2013, 25, 3766-3771.
    42.Nasu, K.; Nakagawa, T.; Nomura, H.; Lin, C.-J.; Cheng, C.-H.; Tseng, M.-R.; Yasuda, T.; Adachi, C., Chem. Commun. 2013, 49, 10385-10387.
    43.Kim, M.; Jeon, S. K.; Hwang, S.-H.; Lee, J. Y., Adv. Mater. 2015, 27, 2515-2520.
    44.Nakanotani, H.; Higuchi, T.; Furukawa, T.; Masui, K.; Morimoto, K.; Numata, M.; Tanaka, H.; Sagara, Y.; Yasuda, T.; Adachi, C.,Nat. Commun. 2014, 5, 4016.
    45.Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H., ACS Applied Materials & Interfaces 2016, 8, 27026-27034.
    46.Rajamalli, P.; Thangaraji, V.; Senthilkumar, N.; Ren-Wu, C.-C.; Lin, H.-W.; Cheng, C.-H., Journal of Materials Chemistry C 2017, 5, 2919-2926.
    47.Sempel, A.; Büchel, M., Org. Electron. 2002, 3, 89-92.
    48.Jeon, S.-O.; Jeon, Y.-M.; Kim, J.-W.; Lee, C.-W.; Gong, M.-S., Synth. Met. 2007, 157, 558-563.

    QR CODE