簡易檢索 / 詳目顯示

研究生: 翁振庭
Ung, Chin-Ting
論文名稱: Domatic Partition on Several Classes of Graphs
多種類別圖形之支配數分割
指導教授: 潘雙洪
Poon, Sheung-Hung
口試委員: 黃世強
Wong, Sai-Keung
柯洛克
Ton Kloks
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 67
中文關鍵詞: 支配集支配數支配數分割
外文關鍵詞: dominating set, domatic number, domatic partition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,在圖形理論中,支配數分割為一個經常深受探討的問題。在一個圖形上,將點分割成數個子集合,其中每個子集合皆為一個支配集,而我們將其最大的分割數稱之為支配數。支配數問題是在特定的圖形上找出它的支配數;支配數分割問題則實際在特定的圖形上找出最多組的支配集分割。若給定一個固定常數k,則k支配數分割問題是在特定的圖形上實際找出k組的支配集分割。另外,唯一支配數分割問題則是在特定圖形上判斷是否只有唯一一種支配集分割。
    支配數分割問題已經被證明在一般圖形上為一個NP-complete複雜度的問題,在此篇論文中,我們證明在planar graphs及planar-bipartite graphs上的三支配數分割問題為一個NP-complete複雜度的問題,我們也證明在co-bipartite graphs上的支配數分割問題為一個NP-complete複雜度的問題,另外,我們還證明在一般圖形上的唯一支配數分割問題是一個NP-hard複雜度的問題。另一方面,我們提出幾個在特定圖形上解支配數分割的演算法,首先,我們提出一個演算法可在O(n) 時間內找出maximal planar graphs 上的支配數分割。接著,我們提出一個演算法可在O(n3) 時間內找出P4-sparse graphs上的支配數分割,最後,我們提出一個演算法可在O(n3) 時間內找出tree-cographs 上的支配數分割。


    The domatic number of a graph G = (V,E), denoted by DN(G), is the maximum number k such that V can be partitioned into k disjoint dominating sets. The domatic number problem is to find DN(G) for a graph G. The domatic partition problem is to find a partition of the vertices of G into DN(G) disjoint dominating sets. The k-domatic partition problem with fixed k is to find a partition of the vertices of G into k disjoint dominating sets. The unique domatic partition problem is to decide whether G has an unique domatic partition or not. The unique k-domatic partition
    problem with fixed k is to decide whether G has an unique k-domatic partition or not.
    In this thesis, we show that 3-domatic partition problem is NP-complete on planar graphs and planar-bipartite graphs and the domatic partition problem is NP-complete on co-bipartite graphs. We also showed that the unique 3-domatic partition problem is NP-hard on general graphs. Moreover, we propose a 3-domatic partition algorithm for maximal planar graphs in O(n) time and O(n^3)-time algorithms for the domatic partition problem on P4-sparse graphs and tree-cographs, respectively.

    1 Introduction ---------------------------------------- p.4 1.1 Motivation -------------------------------------- p.5 1.2 Related work ------------------------------------ p.6 1.3 Problem definition ------------------------------ p.8 1.4 Our contribution -------------------------------- p.10 1.5 Outline ----------------------------------------- p.11 2 Preliminaries --------------------------------------- p.13 2.1 Graph terminology and notation ------------------ p.13 2.2 Properties of the domatic number ---------------- p.16 3 NP-Completeness Results ----------------------------- p.18 3.1 3-domatic partition on planar graphs ------------ p.18 3.2 3-domatic partition on planar-bipartite graphs -- p.20 3.3 Domatic partition on co-bipartite graphs -------- p.22 3.4 Unique 3-domatic partition on general graphs ---- p.25 4 Algorithms ------------------------------------------ p.28 4.1 3-domatic partition on maximal planar graphs ---- p.28 4.2 Domatic partition on P4-sparse graphs ----------- p.32 4.3 Domatic partition on tree-cographs -------------- p.43 5 Conclusion and Future Work ------------------------- p.57 5.1 Domatic partition on planar graph classes ------ p.57 5.2 Domatic partition on distance-hereditary graphs p.58 5.3 Domatic partition on grid graphs --------------- p.60

    [1] A., A., Bertossi: Dominating sets for split and bipartite graphs. Information Processing Letters 19, 37 { 40 (1984)
    [2] Alzoubi, K., Wan, P.J., Frieder, O.: New distributed algorithm for connected dominating set
    in wireless ad hoc networks pp. 3849 { 3855 (2002)
    [3] Bertossi, A.A.: On the domatic number of internal graphs. Information Processing Letters
    28, 275 { 280 (1988)
    [4] Bonuccelli, M.A.: Dominating sets and domatic number of circular arc graphs. Discrete Ap-
    plied Mathematics 12, 203 { 213 (1985)
    [5] Booth, K.S., Johnson, J.H.: Dominating sets in chordal graphs. Society for Industrial and
    Applied Mathematics 11, 191 { 199 (1982)
    [6] Brandstadt, A., Mosca, R.: On variations of p4-sparse graphs. Discrete Applied Mathematics
    192, 521 532 (2003)
    [7] C. Berge, Farbung Von Graphen, D.S.: Martin-luther university. Halle-Wittenberg Math-
    Natur Reihe pp. 114 { 115 (1961)
    [8] Chang, G.J.: The domatic number problem. Discrete Mathematics 125(1-3), 115 { 122 (1994)
    [9] Chvatal, V.: Perfectly ordered graphs. Topics on Perfect Graphs pp. 63{65 (1984)
    [10] Cockayne, E.: Domination of undirected graphs a survey. In: Theory and Applications of
    Graphs, Lecture Notes in Mathematics, vol. 642, pp. 141 { 147. Springer Berlin / Heidelberg
    (1978)
    [11] Cockayne, E., Hedetniemi, S.: Optimal domination in graphs. Circuits and Systems, IEEE
    Transactions on 22, 855 { 857 (1975)
    [12] Cockayne, E.J., Hedetniemi, S.T.: Towards a theory of domination in graphs. Networks 7,
    247 { 261 (1977)
    [13] Dai, F., Wu, J.: An extended localized algorithm for connected dominating set formation in
    ad hoc wireless networks. Parallel and Distributed Systems, IEEE Transactions on 15, 908 {
    920 (2004)
    [14] Dankelmann, P., Calkin, N.: The domatic number of regular graphs. South African National
    Research Foundation (2008)
    [15] E. Cockayne, S.G., Hedetniemi, S.: A linear algorithm for the domination number of a tree.
    Information Processing Letters 4, 41 { 44 (1975)
    [16] Farber, M.: Domination, independent domination, and duality in strongly chordal graphs.
    Discrete Applied Mathematics 7, 115 { 130 (1984)
    [17] Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica
    10, 41 { 51 (1990)
    [18] Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simpli ed np-complete graph problems.
    Theoretical Computer Science 1, 237 { 267 (1976)
    [19] Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of np-
    completeness (1979)
    [20] Golumbic, M., Rotics, U.: On the clique-width of perfect graph classes. In: Graph-Theoretic
    Concepts in Computer Science. Springer Berlin / Heidelberg (1999)
    [21] Hammer, P.L., Ma ray, F.: Completely separable graphs. Discrete Applied Mathematics 27,
    85 { 99 (1990)
    [22] Hoang, C.: Ph.d. thesis. McGill University, Montreal, Canada (1985)
    [23] Jamison, B., Olariu, S.: P4-reducible graphs, a class of uniquely tree representable graphs.
    Stud. Appl. Math 81, 79 { 87 (1989)
    [24] Jamison, B., Olariu, S.: Recognizing p4-sparse graphs in linear time. SIAM J. COMPUT. 21,
    381 { 406 (1992)
    [25] Jamison, B., Olariu, S.: A tree representation for p4-sparse graphs. Discrete Applied Mathe-
    matics 35, 115 { 129 (1992)
    [26] Kaplan, H., Shamir, R.: The domatic number problem on some perfect graph families. Infor-
    mation Processing Letters 49, 51 { 56 (1994)
    [27] Lerchs, H.: On the clique-kernel structure of graphs. Department of Computer Science, Uni-
    versity of Toronto (1972)
    [28] Li, S.: On connected k-domination numbers of graphs. Discrete Mathematics 274, 303 { 310
    (2004)
    [29] Lu, T.L., Ho, P.H., Chang, G.J.: The domatic number problem in interval graphs. SIAM
    Journal on Discrete Mathematics 3, 531 { 536 (1990)
    [30] Manacher, G.K., Mankus, T.A.: Finding a domatic partition of an interval graph in time
    o(n). SIAM Journal on Discrete Mathematics 9, 167 { 172 (1996)
    [31] Micali, S., Vazirani, V.V.: An o(
    p
    jvj jej) algoithm for nding maximum matching in general
    graphs. 21th Annual IEEE Symposium on Foundations of Computer Science pp. 17 { 27
    (1980)
    [32] Mikhail J. Atallah, G.K.M., Urrutia, J.: Finding a minimum independent dominating set in
    a permutation graph. Discrete Applied Mathematics 21, 177 { 183 (1988)
    [33] Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination. 45th Annual IEEE
    Symposium on Foundations of Computer Science pp. 248 { 255 (2004)
    [34] P., D., Dailey: Uniqueness of colorability and colorability of planar 4-regular graphs are np-
    complete. Discrete Mathematics 30, 289 { 293 (1980)
    [35] Peng, S.L., Chang, M.S.: A simple linear time algorithm for the domatic partition problem
    on strongly chordal graphs. Information Processing Letters 43, 297 { 300 (1992)
    [36] Peng-Jun Wan, K.M.A., Frieder, O.: Distributed construction of connected dominating set
    in wireless ad hoc networks. INFOCOM 2002. Twenty-First Annual Joint Conference of the
    IEEE Computer and Communications Societies. Proceedings. IEEE 3, 1597 { 1604 (2002)
    [37] Rao, A.S., Rangan, C.P.: Linear algorithm for domatic number problem on interval graphs.
    Information Processing Letters 33, 29 { 33 (1989)
    [38] Rautenbach, D., Volkmann, L.: The domatic number of block-cactus graphs. Discrete Math-
    ematics 187, 185 { 193 (1998)
    [39] Riege, T., Rothe, J.: An exact 2:9416n algorithm for the three domatic number problem. In:
    Mathematical Foundations of Computer Science 2005. Springer Berlin / Heidelberg (2005)
    [40] Riege, T., Rothe, J., Spakowski, H., Yamamoto, M.: An improved exact algorithm for the
    domatic number problem. Information Processing Letters 101, 101 { 106 (2007)
    [41] Tinhofer, G.: Strong tree-cographs are birkho graphs. Discrete Applied Mathematics 22, 275
    { 288 (1988)
    [42] Tsui, K.W.: On the domatic number of bipartite permutation graphs. Master thesis, Dept.
    of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C. (2010)
    [43] Wu, J.: Extended dominating-set-based routing in ad hoc wireless networks with unidirec-
    tional links. Parallel and Distributed Systems, IEEE Transactions on 13, 866 { 881 (2002)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE