簡易檢索 / 詳目顯示

研究生: 胡智閔
HU ZHI-MIN
論文名稱: 700V LDMOSFET最佳化設計
The optimal design of 700V LDMOSFET
指導教授: 龔正
JENG JGONG
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 80
中文關鍵詞: 700V橫向雙擴散金氧半場效電晶體功率元件高壓元件超高壓元件
外文關鍵詞: 700V, LDMOSFET, power device, high voltage device, ultra high voltage device
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 功率元件為了與平面製程整合,必須將傳統垂直式的元件結構改成橫向式的設計,因而可與低壓電路整合於同一晶片上。本論文探討的主軸結構為700伏特橫向雙擴散金氧半場效電晶體,其特性為在結構中的漂移區內填入P型場環(PTOP),使得導通電阻與元件面積獲得到比傳統橫向雙擴散金氧半場效電晶體更佳的元件性能。
    本篇論文將P型場環與預漂移區摻雜(Pre-HVNW)結合於700伏特橫向雙擴散金氧半場效電晶體中作整合分析。改良500伏特結構過長的場氧化層,加入的P型場環讓元件整體的增加降低表面電場(RESURF)效果發揮更顯著;在固定元件尺寸之下的改良式結構比起傳統式結構可以擁有更優越的效能,而我們定義這種改良式結構為複合式橫向雙擴散金氧半場效電晶體。
    最後透過電腦模擬的方式,可以清楚知道在不同條件設定下的崩潰電壓與導通電阻,有效的掌握其結構於最佳化的過程中,經過不斷地相互制衡後最終達到此次設計的目標700伏特,使得在同一尺寸下的元件能充分發揮空間利用率,並提出此複合式結構於未來開發的可能性。


    In order to integrate power devices with planar IC process, the devices’ structure must be changed from the traditional vertical structure to lateral design, such that they can be integrated in the same chip. The main object of this thesis is to design a 700V LDMOSFET. The characteristic of the structure is to fill a PTOP in the drift region in order to decrease on-resistance and to produce better effect than traditional LDMOSFET.
    In this thesis, we integrate the PTOP and Pre-HVNW into 700V LDMOSFET to further improve the performance of RESURF LDMOSFET. Devices’ performance is compared under the base of the same size.
    Finally, we use computer simulation to obtain the detail of breakdown voltage and on-resistance under different situations. Careful tuning is made to obtain the optimum process conditions. The goal reached is that the device can sustain 700V breakdown voltage. The efficiency of the traditional device is indeed improved, and the results of the simulation also create the possibility of developing the complex structure in the future.

    摘要....................................................................................................................I 目錄.................................................................................................................III 第一章 前言.....................................................................................................1 第二章 功率元件的起源與發展.....................................................................4 2.1 從傳統低壓金氧半電晶體到高壓金氧半電晶體........................4 2.2 傳統的功率元件結構....................................................................4 2.3 各種功率元件的改進....................................................................5 2.3.1 傳統橫向雙擴散電晶體.......................................................5 2.3.2 寄生效應的結構改進...........................................................5 2.3.3 衝擊離子化的減緩...............................................................5 2.3.4 淺溝槽絕緣縮小元件面積(Cell pitch) ...............................6 2.3.5 閘極電壓減小耐壓能力.......................................................6 2.3.6 P型浮接場環(P-type floating ring)增加空乏面積..............7 2.3.7 矽晶絕緣體(Silicon on Insulator)增加降低表面電場(RESURF)效果.................................................................................................7 2.3.8 超接面(Super junction)在橫向雙擴散金氧半場效電晶體的應用...............................................................................................................7 2.3.9 保護層(Passviation)對表面離子(Surface ions)的免疫力....7 2.3.10 金屬場板(Field Plate)的應用改進.....................................8 2.4 橫向雙擴散金氧半場效電晶體的導通電阻................................8 2.5 橫向雙擴散金氧半場效電晶體的發展........................................8 2.6 選用橫向雙擴散金氧半場效電晶體的優勢................................9 第三章 功率元件的物理特性.......................................................................23 3.1 功率元件崩潰機制與降低表面電場(RESURF)原理................23 3.1.1 崩潰機制.............................................................................23 3.1.2 降低表面電場原理.............................................................24 3.1.3 橫向雙擴散金氧半場效電晶體的崩潰…….....................25 3.1.4 P型場環與預漂移區摻雜(Pre-HVNW)對橫向雙擴散金氧半場效電晶體改善與優化…….....................................................................26 3.2 寄生元件的操作機制..................................................................26 3.3 功率元件與寄生元件之電性分析..............................................27 3.3.1 橫向雙擴散金氧半場效電晶體的特性.............................27 3.3.2 寄生元件的特性.................................................................27 3.3.3 橫向雙擴散金氧半場效電晶體與寄生元件特性線性組合.....................................................................................................................28 3.4 各類寄生效應與低壓製程之隔絕..............................................28 3.4.1 功率元件獨立絕緣製程(與外部的絕緣) .........................28 3.4.2 功率元件絕緣寄生結構(與內部的抑制) .........................28 第四章 700VLDMOSFET模擬與最佳化設計...........................................42 4.1 參數定義........................................................................................42 4.1.1 崩潰電壓(breakdown voltage)............................................43 4.1.2 導通電阻(on-resistance) ....................................................43 4.1.3 臨界電壓(threshold voltage) ..............................................44 4.1.4 效能指標(efficiency index) ................................................44 4.2 功率元件與低壓元件的整合......................................................44 4.3 傳統結構的橫向雙擴散金氧半場效電晶體模擬......................45 4.3.1 網線(Mesh)定義…….........................................................45 4.3.2 格子點(grid)模擬對電性的影響........................................45 4.4 改進功率元件的模擬..................................................................46 4.5 700伏特功率元件模擬...............................................................46 4.5.1 P型場環(PTOP)製程.........................................................46 4.5.2 預漂移區摻雜(Pre-HVNW)製程.......................................47 4.5.3 P型深埋層(P-buried layer)製程.........................................47 4.5.4 700伏特功率元件製程流程(Process Flow) .....................48 4.5.5 700伏特高壓元件參考結構..............................................48 4.5.6 700伏特高壓元件結構(P型場環與預漂移區摻雜結構)…………………………………………………………………………....48 4.6 改進700伏特功率元件結構模擬..............................................49 4.6.1 汲極延伸............... ...........................................................49 4.6.2 場環設計...........................................................................49 4.7 浮接場板(Floating Field-Plate) ..................................................49 4.8 各種700伏特功率元件之比較..................................................50 第五章 功率元件的量測.............................................................................73 5.1 導通電阻(Ron)與崩潰電壓(BV)萃取........................................73 5.2 模擬與量測比較………………..............................................73 5.3 模擬與量測之差異的可能因素………......................................73 5.3.1 表面移動離子影響(Mobile ions affect).............................73 5.3.2 烘烤效應(baking effect)…………….................................74 第六章 結論...................................................................................................76 參考資料.........................................................................................................78 補充.................................................................................................................80

    [1] SYNOPSYS TSUPREM-4, Two-Dimensional Process Simulation Program,Version-2006.06
    [2] SYNOPSYS MEDICI, Two-Dimensional Device Simulation Program, Version-2006.06
    [3] B. J. Baliga, Power Semiconductor Devices, Copyright 1996 by PWS
    [4] Ik-Seok Yang, Yun-Hak Koh, Jae-Hoon Jeong, Young-Suk Choi and Oh-Kyong Kwon, “ An Improvement of SOA on n-channel SOI LDMOS Transistors ” ISPSD’98 ,pp379-382
    [5] Pyung-Moon Zhang and Oh-Kyong Kwon, “A Simple Method for Formation of the Buffer Layer in n-Channel LDMOS” IEEE 1999 , pp469-472
    [6] H. Teranishi, A. Kitamura, Y. Watanabe, M. Ogino, Y. Sugahara, S. Kajiwara, K. Mochizuki, S. Wakimoto, M. Iwaya, and N. Fujishima “A High Density, Low On-resistance 700V Class Trench Offset Drain LDMOSFET(TOD-LDMOS)”, IEDM, vol.31, pp. 757-760, 2003
    [7] Der-Gao Lin, S. Larry Tu, Yee-Chaung See, and Pak Tam, “ A Novel LDMOS Structure With A Step Gate Oxide”, IEDM , vol.38, pp. 963-966, 1995
    [8] Kozo Kinoshita,Yusuke Kawaguchi, and Akio Nakagawa, “A New Adaptive Resurf Concept for 20V LDMOS Without Breakdown Voltage Degradation at High Current ”, ISPSD’98 , pp. 65-68
    [9] Zia Hossain, Mohamed Imam, Joe Fulton, Masami Tanaka, “Double-resurf 700V N-channel LDMOS with Best-in-class On-resistance”, IEEE, pp. 137-140, 2002
    [10] Jie Wu, Jian Fang, Bo Zhang and Zhaoji Li, “A Novel Double RESURF LDMOS with Multiple Rings in Non-uniform Drift Region”, IEEE, pp. 349-352, 2004
    [12] D. A. Neamen, Semiconductor Physics AND DEVICES , Basic Principle, Copyright 2003 by MGH, 3rd
    [13] S. M. Sze, SEMICONDUCTOR DEVICES Physics and Technology , Copyright 1981 by JWS, 2nd
    [14] N. Fujishima, M. Saito*, A. Kitamura*, Y. Urano*, G. Tada* and Y. Tsuruta*, “A 700V Lateral Power MOSFET with Narrow Gap Double Metal Field Plates Realizing Low On-resistance and Long-term Stability of Performance”, ISPSD’01,pp. 255-258
    [15] Tomohide Terashima*, Junichi Yamashita** and Tomihisa Yamada**, “Over 1000V n-ch LDMOSFET and p-ch LIGBT with JI RESURF Structure and Multiple Floating Field Plate”, ISPSD’95, pp. 455-459
    [16] Wanjun Chen, Bo Zhang, Zehong Li, Zhaoji Li, Xiaochuan Deng, Jianbing Cheng, “Design and Optimization of a Versatile 700 V SPIC Process Using a Fully Implanted Triple-well Technology”, ISPSD’06
    [17] A. R. Alvarez, R. M. Roop, K. I. Ray, G. R. Gettemeyer , “LATERAL DMOS TRANSISTOR OPTIMIZED FOR HIGH VOLTAGE BIMOS APPLICATIONS”, IEDM, vol.16, pp. 420-423
    [18]Pre-HVNW是TMSC之專利
    [19] JOHN W. OSENBACH AND WILLIAM R. KNOLLE, “Semi-Insulating Silicon Nitride (SinSiN)”, IEEE TRANSACTIONS ON ELECTRON DEVICE, VOL. 37 NO.06. JHNE 1990

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE