簡易檢索 / 詳目顯示

研究生: 林勤偉
Lin, Chin Wei
論文名稱: 以最佳化電漿輔助分子束磊晶成長方式減少氮化鎵元件漏電流路徑
Reduction of Current Leakage Paths in GaN Devices through Growth Optimization of Plasma-Assisted Molecular Beam Epitaxy
指導教授: 鄭克勇
Cheng, Keh Yung
口試委員: 謝光前
吳孟奇
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 49
中文關鍵詞: 氮氣電漿再成長介面成長溫度
外文關鍵詞: N2 plasma, regrowth interface, growth temperature
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氮化鎵元件的漏電流是跟磊晶成長和元件製程相關的重要議題,因為漏電流會導致元件電特性變差。在本篇論文中漏電流依據導通的路徑被區分為水平式與垂直式漏電流,而造成漏電流的原因和解決漏電流的方式將會在本篇論文中討論。
    在電漿輔助分子束磊晶系統中,利用氮氣電漿清潔氮化鎵模板表面可以有效的減少殘留於再成長介面的氧和碳原子濃度,同時也能夠保持介面的平整性與品質,氧原子濃度由1.49×1019減少至8.92×1017 cm-3,碳原子濃度由7.22×1018減少至3.38×1016 cm-3。本論文利用氮化鋁鎵/氮化鎵高電子遷移率電晶體結構來探討水平式漏電流議題,經過在900°C氮氣電漿處理15分鐘後,氮化鋁鎵/氮化鎵高電子遷移率電晶體的電子遷移率由469提升至730 cm2/V-s,氮化鋁鎵/氮化鎵蕭基能障二極體的水平式漏電流由1.54減少至0.038 A/cm2。
    分別在成長溫度750、785、815和845°C成長無參雜氮化鎵,以此方式來增加鎵原子在表面的揮發速率,增加鎵原子的揮發速率能抑制被鎵包覆的線差排的產生。本論文利用準垂直式氮化鎵蕭基能障二極體來探討垂直式漏電流的議題。在高溫成長的氮化鎵中,線差排會以凹洞的形式終結在氮化鎵表面,當成長溫度從815升高到845°C,凹洞的平均直徑從507增加至379 nm,這是由於表面上的鎵與氮原子在高溫下能夠獲得更多的動能以利本身移動。由於背景參雜濃度隨著成長溫度升高而降低,故準垂直式蕭基能障二極體的串聯電阻也隨成長溫度升高而增加。藉由在高溫情況下成長氮化鎵,蕭基能障二極體的反向漏電流由6.5×10-2減少至1.8×10-5 A/cm2,大幅降低的漏電流歸因於於氮化鎵中被鎵包覆的線差排的產生能夠被抑制。


    Leakage currents, which could degrade electrical properties of GaN devices, are an important issue related to epitaxial layer growth and device processing. In this thesis, according to the conduction path directions, the origins and solutions of lateral and vertical leakage currents in GaN multiple layer structures are investigated.
    By exposing the GaN template surface to N2 plasma in the plasma-assisted molecular beam epitaxy (PAMBE) system, the concentration of residual oxygen and carbon at the growth interface are effectively reduced from 1.49×1019 to 8.92×1017 and from 7.22×1018 to 3.38×1016 cm-3, respectively, while preserving a good interface quality. The AlGaN/GaN high electron mobility transistor (HEMT) structure is used to study the lateral leakage current problem. The mobility of the AlGaN/GaN HEMT is increased from 469 to 730 cm2/Vs, and the lateral leakage current of AlGaN/GaN Schottky barrier diodes (SBDs) decreased from 1.54 to 0.038 A/cm2, after N2 plasma treatment at 900°C for 15 min.
    Undoped GaN was grown at 750, 785, 815 and 845°C to increase the Ga evaporation rate on the surface such that the formation of Ga-decorated threading dislocations (TDs) is suppressed. Quasi-vertical GaN SBDs are utilized to investigate the vertical leakage current issue. It was found that TDs terminated as pits on the GaN surface grown at high temperatures. The average diameter of pits decreased from 507 to 379 nm as GaN growth temperature increased from 815 to 845 °C as Ga and N adatoms gain more kinetic energy to migrate on the surface. The series resistance of quasi-vertical SBDs becomes larger with increasing the growth temperature, which is attributed to the lower background doping concentration achieved in GaN. The reverse leakage current of quasi-vertical SBDs grown at high temperature is reduced from 6.5×10-2 to 1.8×10-5 A/cm2. The significant reduction of the leakage current is attributed to the suppression of Ga-decorated TDs formation in GaN films.

    Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivations 2 1.3 Organization of the Thesis 6 Chapter 2 Introduction to PAMBE of GaN 7 2.1 Introduction of PAMBE System 7 2.2 Mechanisms of GaN Growth by PAMBE 9 2.3 Selection and Preparation of Substrates 12 Chapter 3 Reduction of Lateral Leakage Currents 16 3.1 Experiment 16 3.1.1 Thermal and N2 Plasma Treatments of GaN Template Surface 16 3.1.2 Growth and Fabrication of Al0.2Ga0.8N/ GaN Lateral SBDs 16 3.2 Results and Electrical Characteristics 19 3.2.1 Morphology of Treated GaN Template Surface 19 3.2.2 SIMS Analysis of Residual Si, C, and O at Regrowth Interface 22 3.2.3 2DEG Mobility and Sheet Carrier Concentration 25 3.2.4 I-V Characteristics of Lateral AlGaN/GaN SBDs 27 Chapter 4 Reduction of Vertical Leakage Currents 31 4.1 Experiments 31 4.1.1 Growth of Unintentionally doped (UID) GaN/ N-GaN Structure 31 4.1.2 Fabrication of Quasi-Vertical GaN SBDs 32 4.2 Results and Electrical Characteristics 33 4.2.1 Morphology of UID-GaN Grown at Different Temperatures 33 4.2.2 Morphology of UID-GaN Grown at 845°C with Different Thicknesses 37 4.2.3 C-V Measurement of Unintentionally Doping Concentration of GaN Film Grown at Different Temperatures 39 4.2.4 I-V Characteristics of Quasi-Vertical SBDs 42 Chapter 5 Conclusion and Future Work 45 5.1 Conclusion 45 5.2 Future Work 46 Reference 47

    [1] Okumura H, “Present Status and Future Prospect of Widegap Semiconductor High-Power Devices,” Jpn. J. Appl. Phys. 45, 7565 (2006).
    [2] S. A. Kukushkin, A. V. Osipov, V. N. Bessolov, B. K. Medvedev, V. K. Nevolin and K. A. Tcarik, “Substrates for Epitaxy of Gallium Nitride : New Materials and Techniques,” Rev. Adv. Mater. Sci. 17, 1-32 (2008).
    [3] Anping P. Zhang, Gerard T. Dang, Fan Ren, Hyun Cho, Kyu-Pil Lee, Stephen J. Pearton, Jenn-Inn Chyi, T.-E. Nee, C.-M. Lee, and C.-C. Chuo. “Comparison of GaN P-I-N and Schottky Rectifier Performance,” IEEE Trans. Electron Devices 48, 3 (2001).
    [4] M. J. Manfra, N. G. Weimann, J. W. P. Hsu, L. N. Pfeiffer, K. W. West, “Dislocation and Morphology Control during Molecular Beam Epitaxy of AlGaN/GaN Heterostructures Directly on Sapphire Substrates,” Appl. Phys. Lett. 81, 1456 (2002).
    [5] Lee S. McCarthy, Ioulia P. Smorchkova, Huili Xing, P. Kozodoy, Paul Fini, J. Limb, David L. Pulfrey, James S. Speck, Mark J. W. Rodwell, S. P. DenBaars and U. K. Mishra, “GaN HBT: Toward an RF Device,” IEEE Trans. Electron Devices 48, 3 (2001).
    [6] S. W. King, J. P. Barnak, M. D. Bremser, K. M. Tracy, C. Ronning, R. F. Davis and R. J. Nemanich, “Cleaning of AlN and GaN surfaces,” J. Appl. Phys. 84, 9, (1998).
    [7] M. Azize, Z. Bougrioua, P. Gibart, “Inhibition of interface pollution in AlGaN/GaN HEMT structures regrown on semi-insulating GaN templates,” J. Cryst. Growth, 299, 103–108 (2007).
    [8] M. Asif Khan, J. N. Kuznia, D. T. Olson and R. Kaplan, “Deposition and surface characterization of high quality single crystal GaN layers,” J. Appl. Phys. 73, 3108 (1993).
    [9] S. Fernández-Garrido, G. Koblmüller, E. Calleja, and J. S. Speck. “In situ GaN decomposition analysis by quadrupole mass spectrometry and reflection high-energy electron diffraction,” J. Appl. Phys. 104, 033541 (2008).
    [10] J. W. P. Hsu, M. J. Manfra, S. N. G. Chu, C. H. Chen, L. N. Pfeiffer, “Effect of growth stoichiometry on the electrical activity of screw dislocations in GaN films grown by molecular beam epitaxy,” Appl. Phys. Lett. 78, 3980 (2001).
    [11] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Appl. Phys. Lett. 81, 79 (2002).
    [12] Stephen W. Kaun, Man Hoi Wong, Sansaptak Dasgupta, Soojeong Choi, Roy Chung, Umesh K. Mishra, and James S. Speck, “Effects of Threading Dislocation Density on the Gate Leakage of AlGaN/GaN Heterostructures for High Electron Mobility Transistors,” Applied Physics Express 4, 024101 (2011).
    [13] J. L. Weyher, H. Ashraf, and P. R. Hageman, “Reduction of dislocation density in epitaxial GaN layers by overgrowth of defect-related etch pits,” Appl. Phys. Lett. 95, 031913 (2009).
    [14] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, “Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes,” Appl. Phys. Lett. 78, 1685 (2001).
    [15] E. J. Tarsa, B. Heying, X. H. Wu, P. Fini, S. P. DenBaars and J. S. Speck, “Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy,” J. Appl. Phys. 82, 5472 (1997).
    [16] G. Koblmüller, S. Fernández-Garrido, E. Calleja, and J. S. Speck, “In situ investigation of growth modes during plasma-assisted molecular beam epitaxy of (0001) GaN,” Appl. Phys. Lett. 91, 161904 (2007).
    [17] M.A. Sanchez-Garcia, E. Calleja, E. Monroy, F.J. Sanchez, F. Calle, E. Munoz, R. Beresford, “The effect of the IIIV ratio and substrate temperature on the morphology and properties of GaN- and AlN-layers grown by molecular beam epitaxy on Si (111),” J. Cryst. Growth 183, 23-30 (1998).
    [18] M. E. Lin, B. Sverdlov, G. L. Zhou, and H. Morkoç, “A comparative study of GaN epilayers grown on sapphire and SiC substrate by PAMBE,” Appl. Phys. Lett. 62, 3479 (1993)
    [19] G. Koblmüller, R. M. Chu, A. Raman, U. K. Mishra, and J. S. Speck, “High-temperature molecular beam epitaxial growth of AlGaN/GaN on GaN templates with reduced interface impurity levels,” J. Appl. Phys. 107, 043527 (2010)
    [20] R. Gaska, “Electron mobility in modulation-doped AlGaN-GaN heterostructures,” Appl. Phys. Lett. 74, 2 (1999).
    [21] Rüdiger Quay, “Gallium Nitride Electronics”.
    [22] B. Jayant Baliga, “Fundamentals of Power Semiconductor Devices.”
    [23] Masakazu Sawada, “Electrical characterization of n-GaN Schottky and PCVD-SiO2-n-GaN interfaces,” J. Cryst. Growth 189/190, 706-710 (1998).
    [24] M Mamor, “Interface gap states and Schottky barrier inhomogeneity at metaln-type GaN Schottky contacts,” J. Phys.: Condens. Matter 21, 335802 (2009).
    [25] X. A. Cao, S. J. Pearton, G. Dang, A. P. Zhang, F. Ren, and J. M. Van Hove, “Effects of interfacial oxides on Schottky barrier contacts to n- and p-type GaN,” Appl. Phys. Lett. 75, 4130 (1999).
    [26] Tamotsu Hashizume, Hideki Hasegawa, “Effects of nitrogen deficiency on electronic properties of AlGaN surface subjected to thermal and plasma process,” Appl. Surf. Sci. 234, 387-394 (2004).
    [27] B. Heying, E. J. Tarsa, C. R. Elsass, P. Fini, S. P. DenBaars, and J. S. Speck, “Dislocation mediated surface morphology of GaN,” J. Appl. Phys. 85, 6470 (1999).
    [28] Brian M. McSkimming, Catherine Chaix, and James S. Speck, “High active nitrogen flux growth of GaN by plasma assisted molecular beam epitaxy,” J. Vac. Sci. Technol., A, 33, 05E128 (2015).
    [29] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoç, and R. J. Molnar, “Dislocation density in GaN determined by photoelectrochemical and hot-wet etching,” Appl. Phys. Lett. 77, 3532 (2000).
    [30] Donald A Neamen, Dhrubes Biswas, “SEMICONDUCTOR PHYSISCS and DEVICES,” pp. 189-192.
    [31] C. R. Elsass, T. Mates, B. Heying, C. Poblenz, P. Fini, P. M. Petroff, S. P. DenBaars, and J. S. Speck, “Effects of growth conditions on the incorporation of oxygen in AlGaN layers grown by PAMBE,” Appl. Phys. Lett. 77, 3167 (2000).
    [32] N. Miura, T. Nanjo, M. Suita, T. Oishi, Y. Abe, T. Ozeki, Ishikawa, T. Egawa, T. Jimbo, “Thermal annealing effects on Ni-Au based Schottky contacts on n-GaN and AlGaN-GaN with insertion of high work function metal,” Solid-State Electron. 48, 689-695 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE