簡易檢索 / 詳目顯示

研究生: 邱柔禎
Chiu,Jou-Chen
論文名稱: 以 EEG 進行幾何心像旋轉與地圖視角轉換認知分類 的腦機介面開發研究
Research on the development of brain-computer interface using EEG for classification between mental rotation and perspective-taking
指導教授: 許慧玉
Hsu, Hui-Yu
丁志堅
Ding, Tsu-Jen
口試委員: 莊鈞翔
Chuang, Chun-Hsiang
陳建誠
Chen, Jian-Cheng
鄭英豪
Cheng, Ying-Hao
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 數理教育研究所
Graduate Institute of Mathematics and Science Education
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 86
中文關鍵詞: 空間能力心像旋轉視角轉換腦機介面
外文關鍵詞: spatial ability, mental rotation, perspective-taking, Brain-Computer Interface(BCI)
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探索如何通過有效的前處理、特徵提取及機器學習方法之腦機介面
    (Brain-Computer Interface, BCI)技術,以提高針對台灣學生在幾何心像旋轉及地圖視角
    轉換任務中不同空間認知任務的分類正確率,以提供更多客觀的數據和指標,進一步
    協助教師診斷學生空間能力。
    利用卷積神經網絡 CNN、SVM、KNN、RNN 和 EEGNET 等機器學習架構,本研
    究分析了腦波資料並進行特徵選取和通道選擇,結果顯示支持向量機 SVM 模型搭配連
    續小波變換 CWT 作為特徵提取方法是各模型中表現最佳的,最高正確率可達 77.8%,
    特別是 SVM 搭配 shan 小波函數,其平均正確率達到 75.1%。以及選擇有代表性的通道
    進行PLI計算可以提高分類準確率,同時減少計算成本。使用小波轉換後的特徵信號進
    行EEGNET 模型分類,平均正確率為75.6%高於使用原始腦波數據的70.5%。本研究提
    供了一種新的評估學生空間能力的方法,為空間能力教學提供更多可能性。


    This study aims to explore how effective preprocessing, feature extraction, and machine
    learning methods in Brain-Computer Interface (BCI) technology can enhance the
    classification accuracy of different mental rotation tasks among Taiwanese students in
    geometry mental rotation and map perspective-taking tasks. The goal is to provide more
    objective data and indicators to assist teachers in diagnosing students' mental rotation
    abilities.
    Using machine learning architectures such as Convolutional Neural Networks (CNN),
    Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Recurrent Neural Networks
    (RNN), and EEGNET, the study analyzed EEG data, performed feature selection, and channel
    selection. The results showed that the SVM model combined with Continuous Wavelet
    Transform (CWT) as the feature extraction method performed the best among all models,
    achieving a maximum accuracy rate of 77.8%. Specifically, the SVM paired with the Shan
    wavelet function attained an average accuracy of 75.1%. Furthermore, selecting representative
    channels for Phase Lag Index (PLI) calculation improved classification accuracy while
    reducing computational costs. The EEGNET model, when classifying feature signals obtained
    from wavelet transform, achieved an average accuracy of 75.6%, higher than the 70.5%
    accuracy using raw EEG data. This study provides a new method for evaluating students'
    mental rotation abilities, offering more possibilities for mental rotation education.

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 2 第三節 名詞釋義 3 第貳章 文獻探討 5 第一節 心像旋轉 5 第二節 視角轉換(perspective-taking) 7 第三節 心像旋轉和視角轉換比較 8 第四節 心像旋轉和視角轉換在試驗平均資料之研究結果 9 第五節 教育相關研究 14 第六節 腦機介面 15 第七節 機器學習與深度學習 17 第八節 腦電圖資料分類的前期研究 25 第參章 研究方法 28 第一節 研究資料 28 第二節 研究流程與架構 31 第三節 前處理、特徵提取與選擇 32 第四節 機器學習設計 36 第肆章 結果與討論 41 第一節 不同的特徵提取的正確率 41 第二節 不同的特徵選擇的正確率 57 第三節 不同的通道選擇的正確率 61 第四節 EEGNET 下不同模型調整的正確率 63 第五節 不同階段資料正確率比較 64 第伍章 結論與建議 70 參考文獻 72

    葉尹瑄、許慧玉,2023,以事件相關腦電位探討幾何剛性變換之研究。2023 第 39 屆科
    學教育國際研討會,台北:國立台灣師範大學。
    Abad, C., Odean, R., & Pruden, S. M. (2018). Sex Differences in Gains Among Hispanic Pre-
    Kindergartners’ Mental Rotation Skills. Frontiers in psychology.
    https://doi.org/10.3389/fpsyg.2018.02563
    Al-Nafjan, A., & Aldayel, M. (2022). Predict Students’ Attention in Online Learning Using
    EEG Data. Sustainability, 14(11), 6553.
    Alabdulwahab, S., & Moon, B. (2020). Feature Selection Methods Simultaneously Improve
    the Detection Accuracy and Model Building Time of Machine Learning Classifiers.
    Symmetry. https://doi.org/10.3390/sym12091424
    Andrews, A. (2022). Integration of Augmented Reality and Brain-Computer Interface
    Technologies for Health Care Applications: Exploratory and Prototyping Study. Jmir
    Formative Research. https://doi.org/10.2196/18222
    Aricò, P., Borghini, G., Di Flumeri, G., Sciaraffa, N., & Babiloni, F. (2018). Passive BCI
    beyond the lab: current trends and future directions. Physiological measurement, 39(8),
    08TR02.
    Arif, S., Munawar, S., & Ali, H. (2023). Driving Drowsiness Detection Using Spectral
    Signatures of EEG-based Neurophysiology. Frontiers in Physiology.
    https://doi.org/10.3389/fphys.2023.1153268
    Armitage, K. L., & Redshaw, J. (2021). Children Boost Their Cognitive Performance With a
    Novel Offloading Technique. Child Development. https://doi.org/10.1111/cdev.13664
    Assari, S. (2020). Mental Rotation in American Children: Diminished Returns of Parental
    Education in Black Families. Pediatric Reports. https://doi.org/10.3390/pediatric12030028
    Astuti, N. K. M., Utami, N. W., & Juliharta, I. G. P. K. (2022). Classification of Blood Donor
    Data Using C4.5 and K-Nearest Neighbor Methods (Case Study: Utd Pmi Bali Province).
    Jurnal Pilar Nusa Mandiri. https://doi.org/10.33480/pilar.v18i1.2790
    Atit, K., Uttal, D. H., & Stieff, M. (2020). Situating space: Using a discipline-focused lens to
    examine spatial thinking skills. Cognitive research: principles and implications, 5(1), 1-16.
    Ayuso, D. M. R., Ortiz-Rubio, A., Moreno-Ramírez, P., Martín-Martín, L., Triviño-Juárez, J.
    M., Serrano-Guzmán, M. F., Cano-Detell, E., Novoa-Casasola, E., Gea, M. M., & Ariza-
    73
    Vega, P. (2021). A New Tool for Assessment of Professional Skills of Occupational Therapy
    Students. Healthcare. https://doi.org/10.3390/healthcare9101243
    Badrinarayanan, V., & Cipolla, R. (2017). SegNet: A Deep Convolutional Encoder-Decoder
    Architecture for Image Segmentation. Ieee Transactions on Pattern Analysis and Machine
    Intelligence. https://doi.org/10.1109/tpami.2016.2644615
    Bashivan, P., Rish, I., Yeasin, M., & Codella, N. (2015). Learning representations from EEG
    with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448.
    Battista, M. T., Frazee, L. M., & Winer, M. L. (2018). Analyzing the Relation Between
    Spatial and Geometric Reasoning for Elementary and Middle School Students.
    Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new
    perspectives. Ieee Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-
    1828.
    Berg, C. A., Hertzog, C., & Hunt, E. (1982). Age Differences in the Speed of Mental
    Rotation. Developmental Psychology. https://doi.org/10.1037/0012-1649.18.1.95
    Blum, A., & Langley, P. (1997). Selection of Relevant Features and Examples in Machine
    Learning. Artificial Intelligence. https://doi.org/10.1016/s0004-3702(97)00063-5
    Bostanov, V. (2004). BCI Competition 2003—Data Sets Ib and IIb: Feature Extraction From
    Event-Related Brain Potentials With the Continuous Wavelet Transform and
    The<tex>$hboxtt T$</Tex>-Value Scalogram. Ieee
    Transactions on Biomedical Engineering. https://doi.org/10.1109/tbme.2004.826702
    Bugli, C., & Lambert, P. (2007). Comparison Between Principal Component Analysis and
    Independent Component Analysis in Electroencephalograms Modelling. Biometrical Journal.
    https://doi.org/10.1002/bimj.200510285
    Cai, J., Luo, J., Wang, S., & Yang, S. (2018). Feature Selection in Machine Learning: A New
    Perspective. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.11.077
    Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-
    to-End Object Detection With Transformers. https://doi.org/10.1007/978-3-030-58452-8_13
    Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies.
    Cambridge University Press.
    Casey, M. B., Nuttall, R., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability
    on gender differences in mathematics college entrance test scores across diverse samples.
    Developmental Psychology, 31(4), 697.
    74
    Cecotti, H., Eckstein, M. P., & Giesbrecht, B. (2014). Single-trial classification of event-
    related potentials in rapid serial visual presentation tasks using supervised spatial filtering.
    IEEE Transactions on Neural Networks and Learning Systems, 25(11), 2030-2042.
    Cecotti, H., & Graser, A. (2010). Convolutional neural networks for P300 detection with
    application to brain-computer interfaces. Ieee Transactions on Pattern Analysis and Machine
    Intelligence, 33(3), 433-445.
    Cecotti, H., & Gräser, A. (2011). Convolutional Neural Networks for P300 Detection With
    Application to Brain-Computer Interfaces. Ieee Transactions on Pattern Analysis and
    Machine Intelligence. https://doi.org/10.1109/tpami.2010.125
    Cha, H.-S., Han, C.-H., & Im, C.-H. (2020). Prediction of Individual User’s Dynamic Ranges
    of EEG Features From Resting-State EEG Data for Evaluating Their Suitability for Passive
    Brain–Computer Interface Applications. Sensors. https://doi.org/10.3390/s20040988
    Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M. (2019). Artificial Neural Networks-
    Based Machine Learning for Wireless Networks: A Tutorial. Ieee Communications Surveys &
    Tutorials. https://doi.org/10.1109/comst.2019.2926625
    Chen, Y. T., Takahashi, S., Nakayama, H., Althammer, M., Goennenwein, S. T. B., Saitoh,
    E., & Bauer, G. (2013). Theory of Spin Hall Magnetoresistance. Physical Review B.
    https://doi.org/10.1103/physrevb.87.144411
    Cheng, Y.-L., & Mix, K. S. (2014). Spatial Training Improves Children's Mathematics
    Ability. Journal of Cognition and Development, 15(1), 2-11.
    https://doi.org/10.1080/15248372.2012.725186
    Cheng, Z., Wang, S., Zhang, P., Wang, S., Liu, X., & Zhu, E. (2021). Improved Autoencoder
    for Unsupervised Anomaly Detection. International Journal of Intelligent Systems.
    https://doi.org/10.1002/int.22582
    Choi, H., Park, J. H., & Yang, Y.-M. (2022). A Novel Quick-Response Eigenface Analysis
    Scheme for Brain–Computer Interfaces. Sensors. https://doi.org/10.3390/s22155860
    Choi, H.-I., Noh, G. J., & Shin, H.-C. (2020). Measuring the Depth of Anesthesia Using
    Ordinal Power Spectral Density of Electroencephalogram. Ieee Access.
    https://doi.org/10.1109/access.2020.2980370
    Christie, G. J., Cook, C. M., Ward, B. J., Tata, M. S., Sutherland, J., Sutherland, R. J., &
    Saucier, D. M. (2013). Mental rotational ability is correlated with spatial but not verbal
    working memory performance and P300 amplitude in males. Plos One, 8(2), e57390.
    75
    Chu, M., & Kita, S. (2011). The Nature of Gestures' Beneficial Role in Spatial Problem
    Solving. Journal of Experimental Psychology General. https://doi.org/10.1037/a0021790
    Constantinescu, M., Moore, D. S., Johnson, S. P., & Hines, M. (2017). Early Contributions to
    Infants’ Mental Rotation Abilities. Developmental Science.
    https://doi.org/10.1111/desc.12613
    Dehais, F., Duprès, A., Blum, S., Drougard, N., Scannella, S., Roy, R. N., & Lotte, F. (2019).
    Monitoring Pilot’s Mental Workload Using ERPs and Spectral Power With a Six-Dry-
    Electrode EEG System in Real Flight Conditions. Sensors. https://doi.org/10.3390/s19061324
    Delorme, A., & Makeig, S. (2004). EEGLAB: An Open Source Toolbox for Analysis of
    Single-Trial EEG Dynamics Including Independent Component Analysis. Journal of
    Neuroscience Methods. https://doi.org/10.1016/j.jneumeth.2003.10.009
    Desiani, A. (2022). Perbandingan Implementasi Algoritma Naïve Bayes Dan K-Nearest
    Neighbor Pada Klasifikasi Penyakit Hati. Simkom. https://doi.org/10.51717/simkom.v7i2.96
    Destrero, A., Mosci, S., Mol, C. D., Verri, A., & Odone, F. (2008). Feature Selection for
    High-Dimensional Data. Computational Management Science.
    https://doi.org/10.1007/s10287-008-0070-7
    Devine, T. (2016). Detection of Dispersed Radio Pulses: A Machine Learning Approach to
    Candidate Identification and Classification. https://doi.org/10.48550/arxiv.1603.09461
    Devlin, J. (2018). BERT: Pre-Training of Deep Bidirectional Transformers for Language
    Understanding. https://doi.org/10.48550/arxiv.1810.04805
    Dibek, E., Ö zdemir, A. A., & Güven, Y. (2019). The Examination of 5-6 Year-Old Children’s
    Ability to Use Simple Maps. Journal of Education and Training Studies.
    https://doi.org/10.11114/jets.v7i3.3904
    Ding, T. J., Hsu, H. Y., & Yao, C. Y. (2023). Spatial Reasoning in Geometry and
    Cartography. Proceedings of the 46th Conference of the International Group for the
    Psychology of Mathematics Education, Vol. 1, pp.371., University of Haifa.
    Ding, X., Wang, B., & Wang, Z. (2018). Dynamic Threshold Location Algorithm Based on
    Fingerprinting Method. Etri Journal. https://doi.org/10.4218/etrij.2017-0155
    ElDahshan, K. A., AlHabshy, A. A., & Mohammed, L. T. (2023). Filter and Embedded
    Feature Selection Methods to Meet Big Data Visualization Challenges. Computers Materials
    & Continua. https://doi.org/10.32604/cmc.2023.032287
    76
    Elekes, F., Varga, M., & Király, I. (2017). Level‐2 Perspectives Computed Quickly and
    Spontaneously: Evidence From Eight‐ to 9.5‐year‐old Children. British Journal of
    Developmental Psychology. https://doi.org/10.1111/bjdp.12201
    Erle, T. M. (2019). Level-2 Visuo-Spatial Perspective-Taking and Interoception – More
    Evidence for the Embodiment of Perspective-Taking. Plos One.
    https://doi.org/10.1371/journal.pone.0219005
    Erle, T. M., & Topolinski, S. (2017). The Grounded Nature of Psychological Perspective-
    Taking. Journal of Personality and Social Psychology. https://doi.org/10.1037/pspa0000081
    Ewing, K., Fairclough, S. H., & Gilleade, K. (2016). Evaluation of an Adaptive Game That
    Uses EEG Measures Validated During the Design Process as Inputs to a Biocybernetic Loop.
    Frontiers in human neuroscience. https://doi.org/10.3389/fnhum.2016.00223
    Fazel-Rezai, R., Allison, B. Z., Guger, C., Sellers, E. W., Kleih, S. C., & Kübler, A. (2012).
    P300 brain computer interface: current challenges and emerging trends. Frontiers in
    neuroengineering, 14.
    Flavell, J. H. (1977). The development of knowledge about visual perception. Nebraska
    Symposium on Motivation. Nebraska Symposium on Motivation,
    Frick, A. (2019). Spatial transformation abilities and their relation to later mathematics
    performance. Psychological Research, 83(7), 1465-1484.
    Friedrich, E. V., Scherer, R., & Neuper, C. (2012). The effect of distinct mental strategies on
    classification performance for brain-computer interfaces. Int J Psychophysiol, 84(1), 86-94.
    https://doi.org/10.1016/j.ijpsycho.2012.01.014
    Gao, Z., Wang, X., Yang, Y., Mu, C., Cai, Q., Dang, W., & Zuo, S. (2019). EEG-Based
    Spatio–Temporal Convolutional Neural Network for Driver Fatigue Evaluation. IEEE
    Transactions on Neural Networks and Learning Systems, 30(9), 2755-2763.
    https://doi.org/10.1109/TNNLS.2018.2886414
    Gardony, A. L., Taylor, H. A., & Brunyé, T. T. (2013). What Does Physical Rotation Reveal
    About Mental Rotation? Psychological Science. https://doi.org/10.1177/0956797613503174
    Gateau, T., Ayaz, H., & Dehais, F. (2018). In Silico vs. Over the Clouds: On-the-Fly Mental
    State Estimation of Aircraft Pilots, Using a Functional Near Infrared Spectroscopy Based
    Passive-Bci. Frontiers in human neuroscience. https://doi.org/10.3389/fnhum.2018.00187
    Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to Forget: Continual
    Prediction With LSTM. Neural Computation. https://doi.org/10.1162/089976600300015015
    77
    Gunia, A., Moraresku, S., & Vlček, K. (2021). Brain mechanisms of visuospatial perspective-
    taking in relation to object mental rotation and the theory of mind. Behavioural Brain
    Research, 407, 113247. https://doi.org/https://doi.org/10.1016/j.bbr.2021.113247
    Hajinoroozi, M., Mao, Z., Jung, T.-P., Lin, C.-T., & Huang, Y. (2016). EEG-based prediction
    of driver's cognitive performance by deep convolutional neural network. Signal Processing:
    Image Communication, 47, 549-555.
    Halawani, G. M. (2021). Convolutional Neural Network for Image Classification Based on
    Transfer Learning Technique. https://doi.org/10.32920/ryerson.14663658.v1
    Hawes, Z., LeFevre, J. A., Xu, C., & Bruce, C. D. (2015). Mental Rotation With Tangible
    Three‐Dimensional Objects: A New Measure Sensitive to Developmental Differences in 4‐ to
    8‐Year‐Old Children. Mind Brain and Education. https://doi.org/10.1111/mbe.12051
    Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word
    problems: A comparison of successful and unsuccessful problem solvers. Journal of
    Educational Psychology, 87(1), 18-32. https://doi.org/10.1037/0022-0663.87.1.18
    Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-
    taking spatial abilities. Intelligence, 32(2), 175-191.
    https://doi.org/https://doi.org/10.1016/j.intell.2003.12.001
    Heyden, K. M. V., Huizinga, M., Raijmakers, M. E. J., & Jolles, J. (2017). Children’s
    Representations of Another Person’s Spatial Perspective: Different Strategies for Different
    Viewpoints? Journal of Experimental Child Psychology.
    https://doi.org/10.1016/j.jecp.2016.09.001
    Hjaltason, G. R., & Samet, H. (1999). Distance Browsing in Spatial Databases. Acm
    Transactions on Database Systems. https://doi.org/10.1145/320248.320255
    Hong, Y., Deligiannidis, S., Taengnoi, N., Bottrill, K. R. H., Thipparapu, N. K., Wang, Y.,
    Sahu, J. K., Richardson, D. J., Mesaritakis, C., Bogris, A., & Petropoulos, P. (2022). ML-
    Assisted Equalization for 50-Gb/S/Λ O-Band CWDM Transmission Over 100-Km SMF. Ieee
    Journal of Selected Topics in Quantum Electronics.
    https://doi.org/10.1109/jstqe.2022.3155990
    Hossain, R., Oo, A. M. T., & Ali, A. (2013). The Combined Effect of Applying Feature
    Selection and Parameter Optimization on Machine Learning Techniques for Solar Power
    Prediction. American Journal of Energy Research. https://doi.org/10.12691/ajer-1-1-2
    Hostetter, A. B., & Alibali, M. W. (2018). Gesture as Simulated Action: Revisiting the
    Framework. Psychonomic Bulletin & Review. https://doi.org/10.3758/s13423-018-1548-0
    78
    Hwang, S.-Y., & Kim, J.-J. (2023). A Universal Activation Function for Deep Learning.
    Computers Materials & Continua. https://doi.org/10.32604/cmc.2023.037028
    Inagaki, H., Meguro, K., Shimada, M., Ishizaki, J., Okuzumi, H., & Yamadori, A. (2002).
    Discrepancy between mental rotation and perspective-taking abilities in normal aging
    assessed by Piaget's three-mountain task. Journal of Clinical and Experimental
    Neuropsychology, 24(1), 18-25.
    Janczyk, M. (2013). Level 2 Perspective Taking Entails Two Processes: Evidence From PRP
    Experiments. Journal of Experimental Psychology Learning Memory and Cognition.
    https://doi.org/10.1037/a0033336
    Jansen, P., Kellner, J., & Rieder, C. (2013). The Improvement of Mental Rotation
    Performance in Second Graders After Creative Dance Training. Creative Education.
    https://doi.org/10.4236/ce.2013.46060
    Jiao, Z., Gao, X., Wang, Y., Li, J., & Xu, H. (2018). Deep Convolutional Neural Networks for
    mental load classification based on EEG data. Pattern Recognition, 76, 582-595.
    https://doi.org/https://doi.org/10.1016/j.patcog.2017.12.002
    Jung, K., Zhang, B.-T., & Mitra, P. (2015). Deep Learning for the Web.
    https://doi.org/10.1145/2740908.2741982
    Kakkos, I., Dimitrakopoulos, G. N., Sun, Y., Yuan, J., Matsopoulos, G. K., Bezerianos, A., &
    Sun, Y. (2021). EEG fingerprints of task-independent mental workload discrimination. Ieee
    Journal of Biomedical and Health Informatics, 25(10), 3824-3833.
    Karádi, K., Kállai, J., & Kovács, B. (2001). Cognitive Subprocesses of Mental Rotation: Why
    Is a Good Rotator Better Than a Poor One? Perceptual and Motor Skills.
    https://doi.org/10.2466/pms.2001.93.2.333
    Karami, G., Orlando, M. G., Pizzi, A. D., & Caulo, M. (2021). Predicting Overall Survival
    Time in Glioblastoma Patients Using Gradient Boosting Machines Algorithm and Recursive
    Feature Elimination Technique. Cancers. https://doi.org/10.3390/cancers13194976
    Karg, K., Schmelz, M., Call, J., & Tomasello, M. (2016). Differing Views: Can Chimpanzees
    Do Level 2 Perspective-Taking? Animal Cognition. https://doi.org/10.1007/s10071-016-0956-
    7
    Karlovskiy, D., & Konyshev, V. (2007). Visualmind framework for brain-computer interface
    development. Proceedings of the 3rd Russian-Bavarian Conference on Bio-Medical
    Engineering,
    79
    Kawasaki, T., & Matsuda, T. (2017). Easy Assessment Tool for Motor Imagery Ability in
    Elementary Scool Students. Journal of Physical Therapy Science.
    https://doi.org/10.1589/jpts.29.1848
    Kessler, K., & Rutherford, H. (2010). The two forms of visuo-spatial perspective taking are
    differently embodied and subserve different spatial prepositions. Frontiers in psychology, 1,
    213.
    Khalid, M. B., Rao, N. I., Rizwan-i-Haque, I., Munir, S., & Tahir, F. (2009). Towards a brain
    computer interface using wavelet transform with averaged and time segmented adapted
    wavelets. 2009 2nd international conference on computer, control and communication,
    Khan, M. J., & Hong, K. S. (2015). Passive BCI Based on Drowsiness Detection: An fNIRS
    Study. Biomedical Optics Express. https://doi.org/10.1364/boe.6.004063
    Klug, M., & Gramann, K. (2020). Identifying Key Factors for Improving ICA-based
    Decomposition of EEG Data in Mobile and Stationary Experiments.
    https://doi.org/10.1101/2020.06.02.129213
    Ko, L.-W., Komarov, O., Hairston, W. D., Jung, T.-P., & Lin, C.-T. (2017). Sustained
    attention in real classroom settings: An EEG study. Frontiers in human neuroscience, 11,
    388.
    Köllőd, C. M., Adolf, A., Iván, K., Márton, G., & Ulbert, I. (2023). Deep Comparisons of
    Neural Networks From the EEGNet Family. Electronics, 12(12), 2743.
    https://doi.org/10.3390/electronics12122743
    Kothe, C. A., & Makeig, S. (2013). BCILAB: a platform for brain–computer interface
    development. Journal of Neural Engineering, 10(5), 056014.
    Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet Classification With Deep
    Convolutional Neural Networks. Communications of the Acm.
    https://doi.org/10.1145/3065386
    Krüger, M., & Ebersbach, M. (2017). Mental Rotation and the Human Body: Children's
    Inflexible Use of Embodiment Mirrors That of Adults. British Journal of Developmental
    Psychology. https://doi.org/10.1111/bjdp.12228
    Labonté-LeMoyne, É., Courtemanche, F., Louis, V., Fredette, M., Sénécal, S., & Léger, P.-M.
    (2018). Dynamic Threshold Selection for a Biocybernetic Loop in an Adaptive Video Game
    Context. Frontiers in human neuroscience. https://doi.org/10.3389/fnhum.2018.00282
    Lambert, K., & Spinath, B. (2017). Conservation Abilities, Visuospatial Skills, and
    Numerosity Processing Speed: Association With Math Achievement and Math Difficulties in
    80
    Elementary School Children. Journal of Learning Disabilities.
    https://doi.org/10.1177/0022219417690354
    Lawhern, V. J., Solon, A. J., Waytowich, N. R., Gordon, S. M., Hung, C. P., & Lance, B. J.
    (2018). EEGNet: a compact convolutional neural network for EEG-based brain–computer
    interfaces. Journal of Neural Engineering, 15(5), 056013.
    LeCun, Y., Kavukcuoglu, K., & Farabet, C. (2010). Convolutional networks and applications
    in vision. Proceedings of 2010 IEEE international symposium on circuits and systems,
    Lee, U., & Yoo, W.-K. (2014). Study of the Removal of TMS Induced Artifacts on Human
    EEG Based on the Partial Cross-Correlations. https://doi.org/10.14257/astl.2014.58.19
    Levin, S. L., Mohamed, F. B., & Platek, S. M. (2005). Common ground for spatial cognition?
    A behavioral and fMRI study of sex differences in mental rotation and spatial working
    memory. Evolutionary Psychology, 3(1), 147470490500300116.
    Levine, S. C., Jordan, N. C., & Huttenlocher, J. (1992). Development of calculation abilities
    in young children. Journal of Experimental Child Psychology, 53(1), 72-103.
    https://doi.org/https://doi.org/10.1016/S0022-0965(05)80005-0
    Li, Y., Ang, K. K., & Guan, C. (2010). Digital signal processing and machine learning. Brain-
    Computer Interfaces: Revolutionizing Human-Computer Interaction, 305-330.
    Liao, Z., & Couillet, R. (2019). A Large Dimensional Analysis of Least Squares Support
    Vector Machines. Ieee Transactions on Signal Processing.
    https://doi.org/10.1109/tsp.2018.2889954
    Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in
    spatial ability: A meta-analysis. Child Development, 56(6), 1479-1498.
    https://doi.org/10.2307/1130467
    Lipton, Z. C. (2015). A Critical Review of Recurrent Neural Networks for Sequence
    Learning. https://doi.org/10.48550/arxiv.1506.00019
    Liu, S., Ni'mah, I., Menkovski, V., Mocanu, D. C., & Pechenizkiy, M. (2021). Efficient and
    Effective Training of Sparse Recurrent Neural Networks. Neural Computing and
    Applications. https://doi.org/10.1007/s00521-021-05727-y
    Maddirala, A. K., & Veluvolu, K. C. (2022). ICA With CWT and <i>k</I>-Means for Eye-
    Blink Artifact Removal From Fewer Channel EEG. IEEE Transactions on Neural Systems
    and Rehabilitation Engineering. https://doi.org/10.1109/tnsre.2022.3176575
    81
    Massé, E., Bartheye, O., & Fabre, L. (2022). Classification of Electrophysiological Signatures
    With Explainable Artificial Intelligence: The Case of Alarm Detection in Flight Simulator.
    Frontiers in Neuroinformatics. https://doi.org/10.3389/fninf.2022.904301
    McGee, M. G. (1979). Human spatial abilities: psychometric studies and environmental,
    genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889.
    Moll, H., & Meltzoff, A. N. (2011). How Does It Look? Level 2 Perspective-Taking at 36
    Months of Age. Child Development. https://doi.org/10.1111/j.1467-8624.2010.01571.x
    Morán-Fernández, L., Bolón-Canedo, V., & Alonso-Betanzos, A. (2018). Feature Selection
    With Limited Bit Depth Mutual Information for Embedded Systems.
    https://doi.org/10.3390/proceedings2181187
    Mucherino, A., Papajorgji, P. J., Pardalos, P. M., Mucherino, A., Papajorgji, P. J., & Pardalos,
    P. M. (2009). K-nearest neighbor classification. Data mining in agriculture, 83-106.
    Myrden, A., & Chau, T. (2017). A Passive EEG-BCI for Single-Trial Detection of Changes in
    Mental State. IEEE Trans Neural Syst Rehabil Eng, 25(4), 345-356.
    https://doi.org/10.1109/tnsre.2016.2641956
    Nafis, N. S. M., & Awang, S. (2021). An Enhanced Hybrid Feature Selection Technique
    Using Term Frequency-Inverse Document Frequency and Support Vector Machine-Recursive
    Feature Elimination for Sentiment Classification. Ieee Access.
    https://doi.org/10.1109/access.2021.3069001
    Newcombe, N. S., & Shipley, T. F. (2014). Thinking about spatial thinking: New typology,
    new assessments. In Studying visual and spatial reasoning for design creativity (pp. 179-192).
    Springer.
    Park, S., Han, C. H., & Im, C.-H. (2020). Design of Wearable EEG Devices Specialized for
    Passive Brain–Computer Interface Applications. Sensors. https://doi.org/10.3390/s20164572
    Piaget, J., & Inhelder, B. (1956). The child's conception ofspace. FJ Langdon & JL Lunzer,
    trans.). London: Routledge & Kegan Paul.
    Pion-Tonachini, L., Kreutz-Delgado, K., & Makeig, S. (2019). ICLabel: An automated
    electroencephalographic independent component classifier, dataset, and website. Neuroimage,
    198, 181-197.
    Predoiu, A., DinuŢĂ, G., & Gavojdea, A.-M. (2016). Spatial Orientation and Attention at 12
    Years Old Artistic Gymnasts and Handball Players.
    https://doi.org/10.15303/rjeap.2016.si1.a12
    82
    Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., &
    Liu, P. J. (2019). Exploring the Limits of Transfer Learning With a Unified Text-to-Text
    Transformer. https://doi.org/10.48550/arxiv.1910.10683
    Reddy, P. D., & Parvathy, L. R. (2022). Predicting Air Pollution Level in Particular Area
    Using KNN by Comparing Accuracy With SVM. https://doi.org/10.3233/apc220026
    Ren, C., Sun, L., Yu, Y., & Wu, C. Q. (2020). Effective Density Peaks Clustering Algorithm
    Based on the Layered K-Nearest Neighbors and Subcluster Merging. Ieee Access.
    https://doi.org/10.1109/access.2020.3006069
    Ren, K., Zeng, Y., Cao, Z., & Zhang, Y. (2022). ID-RDRL: A Deep Reinforcement Learning-
    Based Feature Selection Intrusion Detection Model. Scientific Reports.
    https://doi.org/10.1038/s41598-022-19366-3
    Riana, R. (2023). Implementation of Information Gain and Particle Swarm Optimization
    Upon Covid-19 Handling Sentiment Analysis by Using K-Nearest Neighbor. Jiko (Jurnal
    Informatika Dan Komputer). https://doi.org/10.33387/jiko.v6i1.5260
    Roy, R. N., Bonnet, S., Charbonnier, S., & Campagne, A. (2013). Mental Fatigue and
    Working Memory Load Estimation: Interaction and Implications for EEG-based Passive BCI.
    https://doi.org/10.1109/embc.2013.6611070
    Sakhavi, S., Guan, C., & Yan, S. (2018). Learning temporal information for brain-computer
    interface using convolutional neural networks. IEEE Transactions on Neural Networks and
    Learning Systems, 29(11), 5619-5629.
    Salcedo-Sanz, S., Rojo-Á lvarez, J. L., Martínez-Ramón, M., & Camps-Valls, G. (2014).
    Support Vector Machines in Engineering: An Overview. Wiley Interdisciplinary Reviews
    Data Mining and Knowledge Discovery. https://doi.org/10.1002/widm.1125
    Schober, F., Schellenberg, R., & Dimpfel, W. (1995). Reflection of mental exercise in the
    dynamic quantitative topographical EEG. Neuropsychobiology, 31(2), 98-112.
    Serino, S., & Riva, G. (2014). What Is the Role of Spatial Processing in the Decline of
    Episodic Memory in Alzheimer’s Disease? The €œmental Frame Syncing―
    Hypothesis. Frontiers in Aging Neuroscience. https://doi.org/10.3389/fnagi.2014.00033
    Shahbakhti, M., Beiramvand, M., Rejer, I., Augustyniak, P., Broniec-Wójcik, A., Wierzchon,
    M., & Marozas, V. (2022). Simultaneous Eye Blink Characterization and Elimination From
    Low-Channel Prefrontal EEG Signals Enhances Driver Drowsiness Detection. Ieee Journal of
    Biomedical and Health Informatics, 26(3), 1001-1012.
    https://doi.org/10.1109/JBHI.2021.3096984
    83
    Shepard, R. N., & Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects.
    Science. https://doi.org/10.1126/science.171.3972.701
    Shi, C., Wang, T., & Wang, L. (2020). Branch Feature Fusion Convolution Network for
    Remote Sensing Scene Classification. IEEE Journal of Selected Topics in Applied Earth
    Observations and Remote Sensing. https://doi.org/10.1109/jstars.2020.3018307
    Shukla, P. K., Chaurasiya, R. K., & Verma, S. (2021). Performance improvement of P300-
    based home appliances control classification using convolution neural network [Article].
    Biomedical Signal Processing and Control, 63, 16, Article 102220.
    https://doi.org/10.1016/j.bspc.2020.102220
    Sun, X., Qian, C., Chen, Z., Wu, Z., Luo, B., & Pan, G. (2016). Remembered or forgotten?—
    An EEG-based computational prediction approach. Plos One, 11(12), e0167497.
    Sundaresan, A., Penchina, B., Cheong, S., Grace, V., Valero-Cabré, A., & Martel, A. (2021).
    Evaluating Deep Learning EEG-based Mental Stress Classification in Adolescents With
    Autism for Breathing Entrainment BCI. Brain Informatics. https://doi.org/10.1186/s40708-
    021-00133-5
    Surtees, A., & Apperly, I. A. (2012). Egocentrism and Automatic Perspective Taking in
    Children and Adults. Child Development. https://doi.org/10.1111/j.1467-8624.2011.01730.x
    Surtees, A., Apperly, I. A., & Samson, D. (2013). The Use of Embodied Self-Rotation for
    Visual and Spatial Perspective-Taking. Frontiers in human neuroscience.
    https://doi.org/10.3389/fnhum.2013.00698
    Surtees, A., Samson, D., & Apperly, I. A. (2016). Unintentional Perspective-Taking
    Calculates Whether Something Is Seen, but Not How It Is Seen. Cognition.
    https://doi.org/10.1016/j.cognition.2015.12.010
    Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
    V., & Rabinovich, A. (2015). Going Deeper With Convolutions.
    https://doi.org/10.1109/cvpr.2015.7298594
    Tang, J., & Liu, H. (2014). An Unsupervised Feature Selection Framework for Social Media
    Data. Ieee Transactions on Knowledge and Data Engineering.
    https://doi.org/10.1109/tkde.2014.2320728
    Tejedor, J., García, C. A., Márquez, D. G., Raya, R., & Otero, A. (2019). Multiple
    Physiological Signals Fusion Techniques for Improving Heartbeat Detection: A Review.
    Sensors. https://doi.org/10.3390/s19214708
    84
    Tian, Y., Shi, Y., & Liu, X. (2012). Recent Advances on Support Vector Machines Research.
    Technological and Economic Development of Economy.
    https://doi.org/10.3846/20294913.2012.661205
    Tinella, L., Lopez, A., Caffò, A. O., Nardulli, F., Grattagliano, I., & Bosco, A. (2021).
    Cognitive Efficiency and Fitness-to-Drive Along the Lifespan: The Mediation Effect of
    Visuospatial Transformations. Brain Sciences. https://doi.org/10.3390/brainsci11081028
    Toma, F.-M. (2023). A hybrid neuro-experimental decision support system to classify
    overconfidence and performance in a simulated bubble using a passive BCI. Expert Systems
    with Applications, 212, 118722. https://doi.org/https://doi.org/10.1016/j.eswa.2022.118722
    Uzair, M., & Jamil, N. (2020, 5-7 Nov. 2020). Effects of Hidden Layers on the Efficiency of
    Neural networks. 2020 IEEE 23rd International Multitopic Conference (INMIC),
    Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., &
    Polosukhin, I. (2017). Attention Is All You Need. https://doi.org/10.48550/arxiv.1706.03762
    Verkijika, S. F., & De Wet, L. (2015). Using a brain-computer interface (BCI) in reducing
    math anxiety: Evidence from South Africa. Computers & Education, 81, 113-122.
    https://doi.org/https://doi.org/10.1016/j.compedu.2014.10.002
    Vigário, R., Särelä, J., Jousmiki, V., Hämäläinen, M. S., & Oja, E. (2000). Independent
    Component Approach to the Analysis of EEG and MEG Recordings. Ieee Transactions on
    Biomedical Engineering. https://doi.org/10.1109/10.841330
    Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and
    Composing Robust Features With Denoising Autoencoders.
    https://doi.org/10.1145/1390156.1390294
    Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning
    over 50 years of cumulative psychological knowledge solidifies its importance. Journal of
    Educational Psychology, 101(4), 817.
    Wakefield, E. M., Foley, A. E., Ping, R. M., Villarreal, J. N., Goldin-Meadow, S., & Levine,
    S. C. (2019). Breaking Down Gesture and Action in Mental Rotation: Understanding the
    Components of Movement That Promote Learning. Developmental Psychology.
    https://doi.org/10.1037/dev0000697
    Wiedenbauer, G., & Jansen-Osmann, P. (2008). Manual Training of Mental Rotation in
    Children. Learning and Instruction. https://doi.org/10.1016/j.learninstruc.2006.09.009
    Wimmer, M. C., Robinson, E., & Doherty, M. (2017). Are Developments in Mental Scanning
    and Mental Rotation Related? Plos One. https://doi.org/10.1371/journal.pone.0171762
    85
    Wintoft, P., & Wik, M. (2021). Exploring Three Recurrent Neural Network Architectures for
    Geomagnetic Predictions. Frontiers in Astronomy and Space Sciences.
    https://doi.org/10.3389/fspas.2021.664483
    Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002).
    Brain–computer Interfaces for Communication and Control. Clinical Neurophysiology.
    https://doi.org/10.1016/s1388-2457(02)00057-3
    Wolpaw, J. R., & Wolpaw, E. W. (2012). Brain-computer interfaces: something new under
    the sun. Brain-computer interfaces: principles and practice, 14.
    Wraga, M., Shephard, J. M., Church, J. A., Inati, S., & Kosslyn, S. M. (2005). Imagined
    rotations of self versus objects: an fMRI study. Neuropsychologia, 43(9), 1351-1361.
    Xie, J., Zhang, J., Sun, J., Ma, Z., Qin, L., Li, G., Zhou, H., & Yang, Z. (2022). A
    Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal
    Information for Raw EEG Classification. IEEE Transactions on Neural Systems and
    Rehabilitation Engineering. https://doi.org/10.1109/tnsre.2022.3194600
    Yang, Y.-X., Gao, Z.-K., Wang, X.-M., Li, Y.-L., Han, J.-W., Marwan, N., & Kurths, J.
    (2018). A recurrence quantification analysis-based channel-frequency convolutional neural
    network for emotion recognition from EEG. Chaos: An Interdisciplinary Journal of
    Nonlinear Science, 28(8).
    Zacks, J. M. (2008). Neuroimaging Studies of Mental Rotation: A Meta-Analysis and
    Review. Journal of Cognitive Neuroscience. https://doi.org/10.1162/jocn.2008.20.1.1
    Zander, T. O., Andreessen, L. M., Berg, A., Bleuel, M., Pawlitzki, J., Zawallich, L., Krol, L.
    R., & Gramann, K. (2017). Evaluation of a Dry EEG System for Application of Passive
    Brain-Computer Interfaces in Autonomous Driving. Frontiers in human neuroscience.
    https://doi.org/10.3389/fnhum.2017.00078
    Zander, T. O., & Kothe, C. (2011). Towards Passive Brain–computer Interfaces: Applying
    Brain–computer Interface Technology to Human–machine Systems in General. Journal of
    Neural Engineering. https://doi.org/10.1088/1741-2560/8/2/025005
    Zhang, P., Wang, X., Zhang, W., & Chen, J. (2019). Learning Spatial–Spectral–Temporal
    EEG Features With Recurrent 3D Convolutional Neural Networks for Cross-Task Mental
    Workload Assessment. IEEE Transactions on Neural Systems and Rehabilitation
    Engineering, 27(1), 31-42. https://doi.org/10.1109/TNSRE.2018.2884641
    86
    Zhang, W., Chen, X., Liu, Y., & Xi, Q. (2020). A Distributed Storage and Computation K-
    Nearest Neighbor Algorithm Based Cloud-Edge Computing for Cyber-Physical-Social
    Systems. Ieee Access. https://doi.org/10.1109/access.2020.2974764
    Zhang, Z., Li, X., & Deng, Z. (2010). A CWT-based SSVEP Classification Method for Brain-
    Computer Interface System. https://doi.org/10.1109/icicip.2010.5564336
    Zheng, Y., Huang, J., Chen, T., Ou, Y., & Zhou, W. (2021). Transfer of Learning in the
    Convolutional Neural Networks on Classifying Geometric Shapes Based on Local or Global
    Invariants. Frontiers in Computational Neuroscience.
    https://doi.org/10.3389/fncom.2021.637144
    Zhu, Y., Shen, X., & Pan, W. (2009). Network-Based Support Vector Machine for
    Classification of Microarray Samples. BMC Bioinformatics.

    QR CODE