研究生: |
江易儒 Chiang, Yi Ju |
---|---|
論文名稱: |
具有多模態共振之電磁波複合超材料與其光學元件之應用 Electromagnetic Composite Metamaterials with Multiple Resonances and Their Applications in Optical Devices |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: |
嚴大任
潘犀靈 金重勳 任貽均 藍永強 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 超材料 |
外文關鍵詞: | Metamaterials |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有多模態共振之複合超材料(Composite metamaterials)豐富了材料本身的電磁特性,因此可以達到較複雜的光學功能以創造出具有實際光學應用價值的超材料。在這本論文中,第一個研究主題呈現了具有右手與左手電磁波特性的雙手超材料(Two-handed metamaterial)。在此,我們引進了兩種共振模態:磁偶極共振(Magnetic-dipole resonance)與類駐波腔體共振(Standing-wave-like cavity resonance)至單位結構上,用以產生右手與左手性質的電磁響應。延伸此一成果,在第二個研究主題中,我們組合了兩種不同類型的共振結構,藉此引入更多共振模態,用以組成複合超材料;並根據此複合超材料製造出兆赫波頻段的超寬頻帶通型濾波器(Ultra-broadband bandpass filter),其頻寬可達0.5 THz,而厚度僅有38.4微米,因此可以整合在兆赫波光學微系統上;另外,我們也利用數值模擬方式證明,藉由調整其複合超材料的結構參數,使之搖身一變成為雙通道帶通型濾波器(Dualband bandpass filter)。在第三個研究主題中,我們也利用了另外兩種不同的共振結構來形成複合超材料,並整合其對於偏振光的轉換性與選擇性這兩種截然不同的電磁響應,設計出超薄型光偏振轉換器(Ultrathin polarization rotator)。此超材料光偏振轉換器之轉換效率高達97.7%,而其厚度僅有50.4微米,為相同功能之半波長石英波片的60分之一,大大縮小了元件的體積。這些以複合超材料製作之光學元件不僅擁有絕佳的性能,而在重量與體積上也更顯輕盈。這些優勢皆證明了具有多模態共振之複合超材料在光學元件與系統的應用上極具發展潛力!
Composite metamaterials (CMMs) with multiple resonant modes enrich their own electric and magnetic properties and hence can achieve complex optical functionalities. In this thesis, first, we realized a two-handed metamaterial that possesses right-handed and left-handed electromagnetic properties in the microwave region by introducing a magnetic-dipole resonance and a standing-wave-like cavity resonance into the unit structure of the metamaterial. Following this work, we combined two distinct resonant structures to form a CMM with multiple resonances for realizing a terahertz-wave ultra-broadband bandpass filter with a broad bandwidth of 0.5 THz and a papery thickness of 38.4 micrometers, so the filter is available for integration into terahertz-wave micro-optical systems. Besides, we also modulated the structure of the CMM to numerically demonstrate a high-profile dualband bandpass filter. In the third work, we further realized another CMM-based optical device: a 90-degree ultrathin polarization rotator (UTPR) with a nearly complete polarization conversion of 97.7 % for the terahertz-wave polarimetry, by integrating the polarization convertibility and the polarization selectivity from two distinct resonant structures. The thickness of the UTPR is only 50.4 micrometers, about 60 times thinner than a commercial half-wavelength quartz waveplates working at the same frequency. All of the CMM-based optical devices possess excellent performances and very compact structures. These substantial advantages demonstrate that CMMs with multiple resonant modes promise significant practical applications in optical devices.
[1]V. G. Veselago, “The electrodynamics of substance with simultaneously negative values of ε and μ,” Sov. Phys. Usp., vol. 10, pp. 509-514 (1968).
[2]D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184-4187 (2000).
[3]R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science, vol. 292, pp. 77-79 (2001).
[4]D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and Negative Refractive Index,” Science, vol. 305, pp. 788-792 (2004).
[5]T. Koschny and M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Effective Medium Theory of Left-Handed Materials,” Phys. Rev. Lett., vol. 97. P. 103402 (2004).
[6]J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett., vol. 76, pp. 4773-4776 (1996).
[7]J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2075-2084 (1999).
[8]C. Kittel, “Introduction to Solid State Physics, 8th Ed.,” pp. 394-403 (John Wiley & Sons, Inc., New Jersey, 2005).
[9]J. D. Jackson, “Classical Electrodynamics, 3rd Ed.,” pp. 309-314 (John Wiley & Sons, Inc., New Jersey, 1999).
[10]N. Seddon, and T. Bearpark, “Observation of the inverse Doppler effect,” Science, vol. 302, pp. 1537-1540 (2003).
[11]J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B. I. Wu, J. A. Kong, and M. Chen, “Cerenkov radiation in materials with negative permittivity and permeability,” Opt. Express, vol. 11, pp. 723-734 (2003).
[12]S. Xi, H. Chen, T. Jiang, L. Ran, J. Huangfu, B. I. Wu, J. A. Kong, and M. Chen, “Experimental Verification of Reversed Cherenkov Radiation in Left-Handed Metamaterial,” Phys. Rev. Lett., vol. 103, p. 194801 (2009).
[13]J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett., vol. 85, 3966-3969 (2000).
[14]N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, pp. 534-537 (2005).
[15]X. Zhang, and Z. Liu, “Superlenses to overcome the diffraction limit,” Natural Materials, vol. 7, pp. 435-441 (2008).
[16]J. D. Watson, and F. H. C. Crick, “Molecular structure of nucleic acids,” Nature, vol. 171, pp. 737-738 (1953).
[17]A. H. J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. Vanboom, G. Van der Marel, and A. Rich, “Molecular structure of a left-handed double helical DNA fragment at atomic resolution,” Nature, vol. 282, pp. 680-686 (1979).
[18]R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Appl. Phys. Lett., vol. 28, pp. 489-491 (2001).
[19]R. Marque´s, J. Martel, F. Mesa, and F. Medina, “Left-Handed-Media Simulation and Transmission of EM Waves in Subwavelength,” Phys. Rev. Lett., vol. 89, p. 183901 (2002).
[20]M. Bayindir, K. Aydin, Ekmel Ozbay, P. Markos, and C. M. Soukoulisc, “Transmission properties of composite metamaterials in free space,” Appl. Phys. Lett., vol. 81, pp. 120-122 (2002).
[21]Th. Koschny, L. Zhang, and C. M. Soukoulis, “Isotropic three-dimensional left-handed metamaterials,” Phys. Rev. B, vol. 71, p. 121103 (2005).
[22]H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, “Terahertz Response of a Microfabricated Rod–Split-Ring-Resonator Electromagnetic Metamaterial,” Phys. Rev. Lett., vol. 94, p. 063901 (2005).
[23]G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Letters, vol. 30, pp. 3198-3200 (2005).
[24]V. M. Shalaev, W. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Letters, vol. 30, pp. 3356-3358 (2005).
[25]Sh. Zhang, W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, “Near-infrared double negative metamaterials,” Opt. Express, vol. 13, pp. 4922-4930 (2005).
[26]J. Zhou, L. Zhang, G. Tuttle, T. Koschny, and C. M. Soukoulis, “Negative index materials using simple short wire pairs,” Phys. Rev. B, vol. 73, p. 041101 (2006).
[27]J. Zhou, El. N. Economon, Th. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Letters, vol. 31, pp. 3620-3622 (2006).
[28]J. Zhou, T. Koschny, and C. M. Soukoulis, “An efficient way to reduce losses of left-handed metamaterials,” Opt. Express, vol. 16, pp. 11147-11152 (2008).
[29]B. A. Munk, Frequency Selective Surface: Theory and Design (John & Sons, Inc., New York, 2000).
[30]S. T. Chase, and R. D. Joseph, “Resonant array bandpass filters for the far infrared” Appl. Optics, vol. 22, pp. 1775-1779 (1983).
[31]P. A. Ade, G. Pisano, C. Tucker, and S. Weaver, “A review of metal mesh filter,” Proc. of SPIE, vol. 6275, p. 62750U (2006).
[32]D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B, vol. 65, p. 195104 (2002).
[33]X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, Jr., and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E, vol. 70, p. 016608 (2004).
[34]T. Koschny, P. Markosˇ, D. R. Smith, and C. M. Soukoulis, “Resonant and antiresonant frequency dependence of the effective parameters of metamaterials,” Phys. Rev. E, vol. 68, p. 065602 (2003).
[35]N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, Ekmel Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B, vol. 70, p. 201101 (2004).
[36]K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and Ekmel Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Letters, vol. 29, pp. 2623-2625 (2004).
[37]F. T. Ulaby, “Fundamental of Applied Electromagnetics,” (Prentice-Hall, Inc., New Jersey, 1999).
[38]T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D.N. Basov, and X. Zhang, “Terahertz Magnetic Response from Artificial Materials,” Science, vol. 303, pp. 1494-1496 (2004).
[39]H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature, vol. 444, pp. 597-600 (2006).
[40]H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime:Design, fabrication and characterization,” Opt. Express, vol. 16, pp. 7181-7188 (2008).
[41]X. G. Peralta, E. I. Smirnova, A. K. Azad, H. T. Chen, A. J. Taylor, I. Brener, and J. F. O’Hara, “Metamaterials for THz polarimetric devices,” Opt. Express, vol. 17, 773-783 (2009).
[42]O. Paul, R. Beigang, and M. Rahm, “Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express, vol. 17, pp. 18590-18595 (2009).
[43]O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express, vol. 16, pp. 6736-6744 (2008).
[44]J. Han, J. Gu, X. Lu, M. He, Q. Xing, and W. Zhang, “Broadband resonant terahertz transmission in a composite metal-dielectric structure,” Opt. Express, vol. 17, pp. 16527-16534 (2009).
[45]A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, “Symmetry Breaking in a Plasmonic Metamaterial at Optical Wavelength,” Nano Letters, vol. 8, pp. 2171-2175 (2008).
[46]B. Kanté, S. N. Burokur, A. Sellier, A. de Lustrac, and J. -M. Lourtioz, “Controlling plasmon hybridization for negative refraction metamaterials,” Phys. Rev. B, vol. 79, p. 075121 (2009).
[47]R. Taubert, R. Ameling, Th. Weiss, A. Christ, and H. Giessen, “From Near-Field to Far-Field Coupling in the Third Dimension: Retarded Interaction of Particle Plasmons,” Nano Letters, vol. 11, pp. 4421-4424 (2011).
[48]A. Ourir, R. Abdeddaim, and J. de Rosny, “Double-T metamaterial for parallel and normal transverse electric incident waves,” Opt. Letters, vol. 36, pp. 1527-1529 (2011).
[49]J. D. Jackson, “Classical Electrodynamics, 3rd Ed.,” pp. 150-151 (John Wiley & Sons, Inc., New Jersey, 1999).
[50]V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett., vol. 99, p. 147401 (2007).
[51]N. Papasimakis, V. A. Fedotov, and N. I. Zheludev, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett., vol. 101, p. 253908 (2008).
[52]C. L. Pan, C. F. Hsieh, R. P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, “Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal,” Opt. Express, vol. 13, pp. 3921-3930 (2005).
[53]C. S. Yang, C. J. Lin, R. P. Pan, C. T. Que, K. Yamamoto, M. Tani, and C. L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B, vol. 27, pp. 1866-1873 (2010).
[54]J. B. Masson, and G. Gallot, “Terahertz achromatic quarter-wave plate,” Opt. Letters, vol. 31, pp. 265-267 (2006).
[55]E. Estacio, S. Saito, T. Nakazato, Y. Furukawa, N. Sarukura, M. Cadatal, M. H. Pham, C. Ponsec, Jr., H. Mizuseki, and Y. Kawazoe, “Birefringence of BaB2O4 crystal in the terahertz region for parametric device design,”Appl. Phys. Lett., vol. 92, p. 09116 (2008).
[56]F. Rutz, T. Hasek, M. Koch, H. Richter, and U. Ewert, “Terahertz birefringence of liquid crystal polymers,” Appl. Phys. Lett., vol. 89, p. 221911 (2006).
[57]N. Vieweg, M. K. Shakfa, and M. Koch, “A nematic mixture with high terahertz birefringence,” Opt. Comm., vol. 284, pp. 1887-1889 (2011).
[58]J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating Electromagnetic Wave Polarizations by Anisotropic Metamaterials,” Phys. Rev. Lett., vol. 99, p. 063908 (2007).
[59]J. Hao, Q. Ren, Z. An, X. Huang, and Z. Chen, “Optical metamaterial for polarization control,” Phys. Rev. A, vol. 80, p. 023807 (2009).
[60]T. Li, H. Liu, S. M. Wang, X. G. Yin, F. M. Wang, S. N. Zhu, and X. Zhang, “Manipulating optical rotation in extraordinary transmission by hybrid plasmonic excitations,” Appl. Phys. Lett., vol. 93, p. 021110 (2008).
[61]T. Li, S. M. Wang, J. X. Cao, H. Liu, and S. N. Zhu, “Cavity-involved plasmonic metamaterial for optical polarization conversion,” Appl. Phys. Lett., vol. 97, p. 261113 (2010).
[62]A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett., vol. 97, p. 177401 (2006).
[63]N. Kanda, K. Konishi, and M. Kuwata-Gonokami, “Terahertz wave polarization rotation with double layered metal grating of complimentary chiral patterns,” Opt. Express, vol. 15, pp. 11117-11125 (2007).
[64]S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett., vol. 102, p. 023901 (2009).
[65]J. Dong, J. Zhou, T. Koschny, and C. Soukoulis, “Bi-layer cross chiral structure with strong optical activity and negative refractive index,” Opt. Express, vol. 17, pp. 14172-14179 (2009).
[66]Y. Ye, and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett., vol. 96, p. 203501 (2010).
[67]N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett., vol. 84, p. 2945 (2004).
[68]Y. Yang, R. Huang, L. Cong, Z. Zhu, J. Gu, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, “Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials,” Appl. Phys. Lett., vol. 98, p. 121114 (2011).
[69]H. Chen, L. Ran, J. Huangfu, X. Zhang, and K. Chen, “Left-handed materials composed of only S-shaped resonators,” Phys. Rev. E, vol. 70, p. 057605 (2004).
[70]D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, and E. I. Simkov, “Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers,” Phys. Rev. B, vol. 82, p. 205117 (2010).
[71]B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics, 2nd Ed.,” pp. 228-231 (John Wiley & Sons, Inc., New Jersey, 2007).
[72]Y. J. Chiang, C. S. Yang, Y. H. Yang, C. L. Pan, and T. J. Yen, “An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial,” Appl. Phys. Lett., vol. 99, p. 191909 (2011).
[73]V. V. Varadan, and R. Ro, “Unique retrieval of complex permittivity and permeability of dispersive materials from reflection and transmitted fields by enforcing causality,” IEEE Trans. Microwave Theory Tech., Vol. 55 pp. 2224-2230 (2007).
[74]B. E. A. Saleh and M. C. Teich, “Fundamentals of Photonics, 2nd Ed.,” pp. 246-248 (John Wiley & Sons, Inc., New Jersey, 2007).