研究生: |
顏甫庭 Yen,Fu Ting |
---|---|
論文名稱: |
二維材料MoS2與Si及GaAs塊材結合之太陽能電池研製 The Study of Hybrid Solar Cells Based on 2D MoS2 with Si and GaAs |
指導教授: |
黃金花
Huang,Jin Hua |
口試委員: |
黃柏瑋
Huang,Po Wei 黃倉秀 Huang,Tsung Shiew |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 二硫化鉬 、砷化鎵 、太陽能電池 、異質接面 |
外文關鍵詞: | MoS2, GaAs, 2D materials, solar cell |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單層MoS2是一極具光電發展潛力的二維材料,本質為n型半導體,且其能隙屬於直接能隙,光電轉換效率高,同時表面無未鍵結懸鍵,可與其他材料形成良好異質接面。將單層MoS2與塊材基板結合製作光伏元件,可以進一步增加元件的吸光區域,大幅提升其總體吸光量。
本研究先以化學合成法 (CVD) 成長單層MoS¬2,再利用轉移的方式分別與p-type Si (100) 基板及p-type GaAs (100) 基板結合,形成異質p-n接面太陽能電池。首先,p-Si/MoS2太陽能電池部分,找出具有最高光電轉換效率的p-Si基板摻雜濃度,再以此為基準,進一步嘗試不同的上電極材料。此部分,p-Si/MoS2太陽能電池光電轉換效率最高達3.362 %。接著,p-GaAs/MoS2太陽能電池部分,是以超高真空分子束磊晶技術 (MBE) 在高摻雜濃度p-GaAs基板上磊晶成長不同摻雜濃度的GaAs薄膜,再藉由調變薄膜厚度以及多層結構之元件,找出具有最高光電轉換效率之元件結構。最終製備的p-GaAs/MoS2太陽能電池光電轉換效率最高達0.406 %。
Monolayer molybdenum disulfide (MoS2), as a two-dimensional material, is an n-type semiconductor with direct band gap suitable for optoelectronic applications. Moreover, the surface of monolayer MoS2 contains no nonbonding dangling bonds; therefore, it can form van der Waals heterojunctions with other semiconductor materials. Integration of monolayer MoS2 and bulk semiconductor materials can enhance the total absorption in photovoltaic devices.
In this work, monolayer MoS2 fabricated by CVD method were transferred on either p-type Si(100) substrates or p-type epitaxial GaAs films to form heterojunction p-n solar cells. In p-Si/MoS2 solar cells, we first investigated the most appropriate doping concentrations of Si substrates to yield heterojunction solar cells with the best power conversion efficiency. Then, different top electrode materials were studied in order to decrease the series resistance of the cells. The best power conversion efficiency obtained in p-Si/MoS2 solar cells was 3.362 %. In p-GaAs/MoS2 solar cells, a variety of GaAs thin films with different doping concentrations were grown on highly p-doped GaAs(100) substrates by MBE. The thickness of the film was optimized, and multilayer structures were attempted to find out the highest efficiency. The best power conversion efficiency in p-GaAs/MoS2 solar cells was 0.406 %.
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
[2] A. K. Geim and I. V. Grigorieva, "Van der Waals heterostructures," Nature, vol. 499, pp. 419-425, 2013.
[3] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nature Nanotechnology, vol. 6, pp. 147-150, 2011.
[4] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, et al., "Two-dimensional atomic crystals," Proceedings of the National Academy of Sciences of the United States of America, vol. 102, pp. 10451-10453, 2005.
[5] N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Gannett, and A. Zettl, "Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy," Physical Review B, vol. 80, p. 155425, 2009.
[6] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, "Anomalous lattice vibrations of single- and few-layer MoS2," ACS Nano, vol. 4, pp. 2695-2700, 2010.
[7] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS2: a new direct-gap semiconductor," Physical Review Letters, vol. 105, p. 136805, 2010.
[8] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, et al., "Emerging photoluminescence in monolayer MoS2," Nano Letters, vol. 10, pp. 1271-1275, 2010.
[9] S. Bertolazzi, J. Brivio, and A. Kis, "Stretching and breaking of ultrathin MoS2," ACS Nano, vol. 5, pp. 9703-9709, 2011.
[10] B. Radisavljevic, M. B. Whitwick, and A. Kis, "Integrated circuits and logic operations based on single-layer MoS2," ACS Nano, vol. 5, pp. 9934-9938, 2011.
[11] J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, et al., "Two-dimensional nanosheets produced by liquid exfoliation of layered materials," Science, vol. 331, pp. 568-571, 2011.
[12] R. J. Smith, P. J. King, M. Lotya, C. Wirtz, U. Khan, S. De, et al., "Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions," Advanced Materials, vol. 23, pp. 3944-3948, 2011.
[13] K.-G. Zhou, N.-N. Mao, H.-X. Wang, Y. Peng, and H.-L. Zhang, "A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues," Angewandte Chemie-International Edition, vol. 50, pp. 10839-10842, 2011.
[14] P. May, U. Khan, J. M. Hughes, and J. N. Coleman, "Role of solubility parameters in understanding the steric stabilization of exfoliated two-dimensional nanosheets by adsorbed polymers," Journal of Physical Chemistry C, vol. 116, pp. 11393-11400, 2012.
[15] A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, "Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides," Journal of Applied Physics, vol. 101, p. 014507, 2007.
[16] Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, et al., "Single-layer MoS2 phototransistors," ACS Nano, vol. 6, pp. 74-80, 2012.
[17] Y. Zhang, J. Ye, Y. Matsuhashi, and Y. Iwasa, "Ambipolar MoS2 thin flake transistors," Nano Letters, vol. 12, pp. 1136-1140, 2012.
[18] W. Qing Hua, K.-Z. Kourosh, K. Andras, N. C. Jonathan, and S. S. Michael, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nature Nanotechnology, vol. 7, pp. 699-712, 2012.
[19] M. M. Benameur, B. Radisavljevic, J. S. Heron, S. Sahoo, H. Berger, and A. Kis, "Visibility of dichalcogenide nanolayers," Nanotechnology, vol. 22, p. 125706, 2011.
[20] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C. Su, et al., "Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates," Nano Letters, vol. 12, pp. 1538-1544, 2012.
[21] Y. Shi, W. Zhou, A.-Y. Lu, W. Fang, Y.-H. Lee, A. L. Hsu, et al., "Van der Waals epitaxy of MoS2 layers using graphene as growth templates," Nano Letters, vol. 12, pp. 2784-2791, 2012.
[22] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, "Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate," Small, vol. 8, pp. 966-971, 2012.
[23] M. Salmeron, G. A. Somorjai, and R. R. Chianelli, "A LEED-AES study of the structure of sulfur monolayers on the Mo (100) crystal-face," Surface Science, vol. 127, pp. 526-540, 1983.
[24] Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, et al., "Synthesis of large-area MoS2 atomic layers with chemical vapor deposition," Advanced Materials, vol. 24, pp. 2320-2325, 2012.
[25] Y.-C. Lin, W. Zhang, J.-K. Huang, K.-K. Liu, Y.-H. Lee, C.-T. Liang, et al., "Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization," Nanoscale, vol. 4, pp. 6637-6641, 2012.
[26] M. Chhowalla, H. S. S. , G. E. , L.-J. L. , K. P. L. , and a. H. Zhang, "The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets," Nature Chemistry, vol. 5, pp. 263-275, 2013.
[27] H. Jiang, "Electronic band structures of molybdenum and tungsten dichalcogenides by the GW approach," Journal of Physical Chemistry C, vol. 116, pp. 7664-7671, 2012.
[28] E. Benavente, M. A. Santa Ana, F. Mendizabal, and G. Gonzalez, "Intercalation chemistry of molybdenum disulfide," Coordination Chemistry Reviews, vol. 224, pp. 87-109, 2002.
[29] G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. Chen, and M. Chhowalla, "Coherent atomic and electronic heterostructures of single-layer MoS2," ACS nano, vol. 6, pp. 7311-7317, 2012.
[30] J. A. Wilsona and A. D. Yoffea, "The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties," Advances in Physics, vol. 18, pp. 193-355, 1969.
[31] A. H. Castro Neto, "Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides," Physical Review Letters, vol. 86, pp. 4382-4385, 2001.
[32] S. Balendhran, J. Z. Ou, M. Bhaskaran, S. Sriram, S. Ippolito, Z. Vasic, et al., "Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method," Nanoscale, vol. 4, pp. 461-466, 2012.
[33] Y. Y. Peng, Z. Y. Meng, C. Zhong, J. Lu, W. C. Yu, Z. P. Yang, et al., "Hydrothermal synthesis of MoS2 and its pressure-related crystallization," Journal of Solid State Chemistry, vol. 159, pp. 170-173, 2001.
[34] T. Li and G. Galli, "Electronic properties of MoS2 nanoparticles," Journal of Physical Chemistry C, vol. 111, pp. 16192-16196, 2007.
[35] A. Molina-Sanchez and L. Wirtz, "Phonons in single-layer and few-layer MoS2 and WS2," Physical Review B, vol. 84, p. 155413, 2011.
[36] S. Najmaei, Z. Liu, P. M. Ajayan, and J. Lou, "Thermal effects on the characteristic Raman spectrum of molybdenum disulfide (MoS2) of varying thicknesses," Applied Physics Letters, vol. 100, p. 013106, 2012.
[37] N. A. Lanzillo, A. G. Birdwell, M. Amani, F. J. Crowne, P. B. Shah, S. Najmaei, et al., "Temperature-dependent phonon shifts in monolayer MoS2," Applied Physics Letters, vol. 103, p. 093102, 2013.
[38] R. Coehoorn, C. Haas, J. Dijkstra, C. J. F. Flipse, R. A. Degroot, and A. Wold, "Electronic-structure of MoSe2, MoS2, and WSe2. I. band-structure calculations and photoelectron-spectroscopy," Physical Review B, vol. 35, pp. 6195-6202, 1987.
[39] K. K. Kam and B. A. Parkinson, "Detailed photocurrent spectroscopy of the semiconducting group-VI transition-metal dichalcogenides," Journal of Physical Chemistry, vol. 86, pp. 463-467, 1982.
[40] 蔡進譯, "超高效率太陽能電池-從愛因斯坦的光電效應談起," 物理雙月刊, pp. 701-719, 2005.
[41] Available: http://pveducation.org/pvcdrom/appendices/standard-solar-spectra
[42] N. R. P. P.S.Priambodo, D. Hartanto,, Solar Cell Technology. INTECH Open Access Publisher.
[43] Photovoltaic Cell I-V Characterization Theory and LabVIEW Analysis Code. Available: http://www.ni.com/white-paper/7230/en/
[44] M. Bernardi, M. Palummo, and J. C. Grossman, "Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials," Nano Letters, vol. 13, pp. 3664-3670, 2013.
[45] M. Shanmugam, T. Bansal, C. A. Durcan, and B. Yu, "Molybdenum disulphide/titanium dioxide nanocomposite-poly 3-hexylthiophene bulk heterojunction solar cell," Applied Physics Letters, vol. 100, p. 153901, 2012.
[46] X. Gu, W. Cui, H. Li, Z. Wu, Z. Zeng, S.-T. Lee, et al., "A solution-processed hole extraction layer made from ultrathin MoS2 nanosheets for efficient organic solar cells," Advanced Energy Materials, vol. 3, pp. 1262-1268, 2013.
[47] M. Shanmugam, C. A. Durcan, and B. Yu, "Layered semiconductor molybdenum disulfide nanomembrane based schottky-barrier solar cells," Nanoscale, vol. 4, pp. 7399-7405, 2012.
[48] L.-Y. Gan, Q. Zhang, Y. Cheng, and U. Schwingenschloegl, "Photovoltaic heterojunctions of fullerenes with MoS2 and WS2 monolayers," Journal of Physical Chemistry Letters, vol. 5, pp. 1445-1449, 2014.
[49] M.-L. Tsai, S.-H. Su, J.-K. Chang, D.-S. Tsai, C.-H. Chen, C.-I. Wu, et al., "Monolayer MoS2 heterojunction solar cells," ACS nano, vol. 8, pp. 8317-8322, 2014.
[50] GaAs Zinc blende structure. Available: http://www.chem.shef.ac.uk/chm131-2001/cha01tal/compoundsemiconductors.html
[51] Silicon diamond structure. Available: http://www.chem.shef.ac.uk/chm131-2001/cha01tal/elementalsemiconductors.html
[52] GaAs band structure. Available: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/bandstr.html
[53] Silicon band structure. Available: http://www.ioffe.ru/SVA/NSM/Semicond/Si/bandstr.html
[54] Drift velocity versus electric field in Silicon and GaAs. Available: http://www.globalsino.com/micro/1/1micro9939.html
[55] Chapter 12: Visible-spectrum LEDs. Available: http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/
[56] GaAs basic parameters at 300K. Available: http://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html
[57] Si basic Electrical properties . Available: http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html#Hall.
[58] J. R. Arthur, "Interaction of Ga and As2 molecular beams with GaAs surfaces," Journal of Applied Physics, vol. 39, pp. 4032-4034, 1968.
[59] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As2 and Ga on {100} GaAs surfaces," Surface Science, vol. 64, pp. 293-304, 1977.
[60] C. T. Foxon and B. A. Joyce, "Interaction kinetics of As4 and Ga on {100} GaAs surfaces using a modulated molecular-beam technique," Surface Science, vol. 50, pp. 434-450, 1975.
[61] A. Y. Cho, "GaAs epitaxy by a molecular beam method - observations of surface structure on (001) face," Journal of Applied Physics, vol. 42, p. 2074, 1971.
[62] O. Lopez-Sanchez, E. Alarcon Llado, V. Koman, A. Fontcuberta i Morral, A. Radenovic, and A. Kis, "Light generation and harvesting in a van der Waals heterostructure," ACS nano, vol. 8, pp. 3042-3048, 2014.
[63] T. Takahagi, I. Nagai, A. Ishitani, H. Kuroda, and Y. Nagasawa, "The formation of hydrogen passivated silicon single-crystal surfaces using ultraviolet cleaning and HF etching," Journal of Applied Physics, vol. 64, pp. 3516-3521, 1988.