簡易檢索 / 詳目顯示

研究生: 何啟源
Ho, Chi-Yuan
論文名稱: 開關式磁阻馬達驅動飛輪之開發及其於 馬達驅動系統能源支撐之應用
DEVELOPMENT OF A SRM DRIVEN FLYWHEEL AND ITS APPLICATION TO MOTOR DRIVE ENERGY SUPPORT
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 王醴
WANG, LI
陳景然
Chen, Ching-Jan
謝欣然
Shieh, Hsin-Jang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 145
中文關鍵詞: 開關式磁阻馬達能量儲存系統飛輪蓄電池切換式整流器直流/直流轉換器升壓電流控制速度控制
外文關鍵詞: Switched-reluctance motor, energy storage system, flywheel, battery, switchmode rectifier, DC/DC converter, voltage boosting, current control, speed control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一開關式磁阻電機驅動之飛輪及其於馬達驅動系統之能源支撐應用研究。在探究開關式磁阻電機於馬達及發電機模式操控之有關基礎與關鍵控制技術後,設計實現所擬開關式磁阻馬達驅動飛輪之電力電路及控制架構。藉由適當設計之換相、脈寬調變電流控制及速度控制架構,所建飛輪具平順之充電加速特性。而為得較佳之飛輪放電效能,除適當換相時刻之設定外,採用具硬式飛輪之磁滯電流控制,以降低正值反電動勢之影響。
    所建用以研習之開關式磁阻電機驅動系統,經單相全橋切換式整流器後接單臂雙向降壓/升壓轉換器由市電入電。具雙向功率潮流能力及優良交流入電電力品質。在驅動模式下,具升壓及良好調節之直流鏈電壓,可增進馬達於高速下之驅動性能。同時,再生煞車回收能量亦可送回電網。
    所建構開關式磁阻馬達驅動系統之直流鏈可由混合式儲能系統進行能源支撐,所提儲能系統含所開發之飛輪及一能源擷取機構,後者可納收可取得之電源,如電池、超級電容器、燃料電池、太陽電池等。所建能源擷取機構採用降壓-升壓/降壓-升壓雙向轉換器介接至馬達驅動系統之直流鏈,而開關式磁阻電機驅動之飛輪採用單臂降壓/升壓雙向介面轉換器。
    所建構開關式磁阻馬達驅動系統可行之操作含: (i) 切換式整流器供電開關式磁阻馬達驅動系統之操控; (ii) 於電網斷電時,馬達驅動系統可由混合式儲能系統提供能源支撐。反之,混合式儲能系統中之儲能裝置可由市電充電; (iii) 間歇性負載能量需求可由飛倫提供。所有組成之操控特性均以實測結果驗證之。


    This thesis develops a switched-reluctance motor (SRM) driven flywheel and performs its application of energy support to motor drive. After exploring the basics and key control issues of a SRM in motoring and generating modes, the power circuit and control schemes of the established SRM flywheel are designed and implemented. In flywheel charging mode, through the designed commutation, PWM current control and speed control schemes, the motor driven flywheel possesses smooth acceleration characteristics. Conversely in flywheel discharging mode, in addition to the proper commutation instant setting, the hysteresis current control with hard freewheeling is adopted to counteract the effects of positive back electromotive force (EMF).
    The studied SRM drive is powered from the mains via a single-phase H-bridge switch-mode rectifier (SMR) followed by an one-leg bidirectional buck/boost converter. The bidirectional power flow capability with good line drawn power quality control capability is possessed. In driving mode, the boosted and well-regulated SRM drive DC link voltage is established to enhance the motor driving performance under higher speeds. And the regenerative braking energy can be recovered back to the DC link.
    The DC link of SRM drive can be supported energies from a hybrid energy storage system (HESS), which consists of the developed flywheel and an energy harvesting scheme with possible DC inputs such as battery, supercapacitor (SC), fuel-cell, photovoltaic, etc. While the energy harvesting scheme utilizes the buck-boost/buck-boost bidirectional DC/DC converter as the interface, the SRM driven flywheel adopts the one-leg buck/boost bidirectional DC/DC converter.
    The possible operations of the established motor drive include: (i) The operation of SMR-fed SRM drive; (ii) As the grid power outage occurs, the motor drive can be supported energy from the HESS. Conversely, the storage devices in the HESS can be charged from the mains; (iii) The intermittent load energy requirement can be quickly supplied by the flywheel. Some measured results are provided to demonstrate the operating characteristics of all power stages in various conditions.

    ABSTRACT i ACKNOWLEDGEMENTS ii LIST OF CONTENTS iii LIST OF FIGURES vi LIST OF TABLES xvi LIST OF SYMBOLS xv CHAPTER 1 INTRODUCTION 1 CHAPTER 2 INTRODUCTION TO SWITCHED-RELUCTANCE MO- TOR DRIVE AND SOME RELATED POWER ELEC- TRONIC TECHNOLOGIES 6 2.1 Introduction 6 2.2 Energy Storage System 6 2.2.1 Energy Storage Devices 6 2.2.2 Applications of Energy Storage System 9 2.3 Front-End Converters 12 2.4 Basics of SRM 14 2.5 Physical Modeling 15 2.6 Dynamic Modeling 17 2.7 SRM Converters 19 CHAPTER 3 ESTABLISHMENT OF A SWITCHED-RELUCTANCE MOTOR DRIVE 23 3.1 Introduction 23 3.2 Power Circuit and Sensing Schemes 23 3.3 Control Schemes 29 3.4 Experimental Evaluation 33 CHAPTER 4 DEVELOPMENT OF SRM DRIVEN FLYWHEEL 49 4.1 Introduction 49 4.2 Power Circuit 49 4.3 Sensing and Commutation Shifting Schemes 51 4.4 Charging Mode 54 4.4.1 Control Scheme 54 4.4.2 Operating Characteristics 57 4.5 Discharging Mode 68 4.5.1 Control Scheme 68 4.5.2 Operating Characteristics 68 CHAPTER 5 BIDIRECTIONAL DC/DC INTERFACE CONVERTER 76 5.1 Introduction 76 5.2 System Configuration 76 5.3 Charging Mode with Buck Converter 78 5.3.1 Buck Converter Basics 78 5.3.2 Design of Power Circuit Components 79 5.3.3 Control Scheme 80 5.3.4 Experimental Results 82 5.4 Discharging Mode with Boost Converter 85 5.4.1 Boost Converter Basics 85 5.4.2 Design of Power Circuit Components 86 5.4.3 Control Scheme 87 5.4.4 Experimental Results 89 CHAPTER 6 SINGLE-PHASE SMR-FED SRM DRIVE WITH ENERGY SUPPORT DC-LINK 92 6.1 Introduction 92 6.2 Configuration of the Studied System 92 6.3 Single-phase SMR 92 6.3.1 General Concept of a Single-phase SMR 92 6.3.2 The Developed H-bridge Boost SMR 95 6.4 H-bridge SMR Followed One-leg Bidirectional DC/DC Interface Converter 104 6.4.1 Motor Driving Mode with Buck Converter 105 6.4.2 Energy Recovery Mode with Boost Converter 109 6.5 SRM Drive with H-bridge SMR Front-end 112 6.6 SRM Driven Flywheel Charging from H-bridge SMR Established DC-link 114 6.7 SRM-Driven Flywheel Discharging to Resistive Load 122 6.8 Battery with Bidirectional DC/DC Interface Converter 127 6.7.1 Basics of Buck-boost/Buck-boost Converter 127 6.7.2 Design of Power Circuit Components 130 6.7.3 Control Scheme 131 6.7.4 Measured Results 131 6.9 SMR-Fed SRM Drive with Stored Energy Support at DC-Link 134 6.9.1 SMR-fed SRM Drive 135 6.9.2 Super-capacitor Powered SRM Drive 136 6.9.3 Multiple Sources Powered SRM Drive 136 CHAPTER 7 CONCLUSIONS 138 REFERENCES 139

    [1] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
    [2] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
    [3] P. C. Sen, Principles of electric machines and power electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc.,2014.
    [4] E. Bostanci, M. Moallem, A. Parsapour, and B. Fahimi, “Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study,” IEEE Trans. Transport. Electrific., vol. 3, no.1, pp. 58-75, 2017.
    [5] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013.
    [6] K. Kiyota, T. Kakishima, H. Sugimoto, and A. Chiba, “Comparison of the test result and 3D-FEM analysis at the knee point of a 60 kW SRM for a HEV,” IEEE Trans. Magn., vol. 49, no. 5, pp. 2291-2294, 2013.
    [7] M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara, M. Takemoto, and M. A. Rahman, “Test results and torque improvement of the 50-kW switched reluctance motor designed for hybrid electric vehicles,” IEEE Trans. Ind. Appl., vol. 48, no. 4, pp. 1327-1334, 2012.
    [8] Y. Hu, X. Song, W. Cao, and B. Ji, “New SR drive with integrated charging capacity for plug-in hybrid electric vehicles (PHEVs),” IEEE Tran. Ind. Electron., vol. 61, no. 10, pp. 5722-5731, 2014.
    [9] Z. Y., F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, 2015.
    [10] M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. PESC, 2008, June, pp. 1235-1241.
    [11] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, 2012.
    [12] B. Singh, A. K. Mishra, and R. Kumar, “Solar powered water pumping system employing switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 3949-3957, 2016
    [13] S. M. Castano, J. Maixe-Altes, and A. Emadi, “Development and performance analysis of a switched reluctance motor drive for an automotive air-conditioning system,” IEEE Transport. Electrific., 2016.
    [14] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kw switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, 2017.
    [15] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
    [16] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. N. Srinivas, “Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
    [17] P. C. Desai, M. Krishnamurthy, N. Schofield, and Ali Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010.
    [18] D. H. Lee, T. H. Pham, and J. W. Ahn, “Design and operation characteristics of four-two pole high-speed SRM for torque ripple reduction,” IEEE Trans. Ind. Electron., vol. 60, no. 9, pp. 3637-3643, 2013.
    [19] R. Madhavan and B. G. Fernandes, “Axial flux segmented SRM with a higher number of rotor segments for electric vehicles,” IEEE Trans. Ind. Electron., vol. 28, no. 1, pp.203-213, 2013.
    [20] A. Chiba, M. Takeno, N. Hoshi, M. Takemoto, S. Ogasawara, and M. A. Rahman, “Consideration of number of series turns in switched-reluctance traction motor competitive to HEV IPMSM,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2333-2340, 2012.
    [21] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
    B. Converters Circuits
    [22] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
    [23] M. Ehsani, J. T. Bass, T. J. E. Miller, and R. L. Steigerwald, “Development of a unipolar converter for variable reluctance motor drives,” IEEE Trans. Ind. Appl., vol. IA-23, no. 3, pp. 545-553, 1992.
    [24] S. Gairola, Priti, and L. N. Paliwal, “A new power converter for SRM drive,” in Proc. IEEE ICPCES, 2010, pp. 1-6.
    [25] S. Sindhuja and D. Susitra, “Design of a novel high grade converter for switched reluctance motor drive using component sharing,” in Proc. IEEE ICEETS, 2013, pp. 1174-1178.
    [26] T. Nonaka, Y. Nakazawa, K. Ohyama, H. Fujii, H. Uehara, and Y. Hyakutake, “Inverter improving motor efficiency of switched reluctance motor for electric vehicle,” in Proc. EPE-PEMC, 2013, pp. 1-8.
    [27] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: a comparative analysis,” IEEE Trans. Transport. Electrific. pp. 1-6, 2014.
    [28] F. Peng, J. Ye, and A. Emadi, “An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 32, no. 11, pp.8618-8631, 2017.
    [29] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
    [30] K. Tomczewski and K. Wrobel, “Improved C-dump converter for switched reluctance motor drives,” IET Power Electron., vol. 7, no. 10, pp. 2628–2635, 2014.
    [31] Y. Murai, J. Cheng, and M. Yoshida, “New soft-switched reluctance motor drive circuit,” IEEE Trans. Ind. Appl., vol. 35, no. 1, pp. 78-85, 1999.
    [32] C. K. Pan, “A DSP-based soft-switching converter-fed switched reluctance motor drive,” Master Thesis, Department of Electrical Engineering National Tsing Hua University, ROC, 2003.
    [33] S. Ebrahimi, V. Najmi, S. Ebrahimi, and H. Oraee, “A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches,” in Proc. IEEE ACEMP, 2011, pp. 125-128.
    [34] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” in Proc. IEEE Elect. Power Appl., 1993, vol. 140, no. 5, pp. 316-322.
    [35] K. Chimata, N. Hoshi, and J. Haruna, “Characteristics of switched reluctance motor drive circuit with voltage boost function without additional reactor,” in Proc. IEEE PEDES, 2012, pp. 1-6.
    [36] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
    [37] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
    [38] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
    [39] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
    C. Modeling and Parameter Estimation of SRM
    [40] O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada, and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magn., vol. 34, no. 4, pp. 2147-2149, 1998.
    [41] K. I. Hwu, “Development of a switched reluctance motor drive,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001.
    [42] B. P. Loop and S. D. Sudoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
    [43] M. Ayaz and A. B. Yildiz, “An equivalent circuit model for switched reluctance motor,” in Proc. IEEE MELCON, 2006, pp. 1182-1185.
    [44] C. Lin, W. Wang, M. McDonough, and B. Fahimi, “An extended field reconstruction method for modeling of switched reluctance machines,” IEEE Trans. Magn., vol. 48, no. 2, pp. 1051-1054, 2012.
    [45] F. L. M. dos Santos, J. Anthonis, F. Naclerio, J. J. C. Gyselinck, H. Van der Auweraer, and L. C. S. Góes, “Multiphysics NVH modeling: simulation of a switched reluctance motor for an electric vehicle,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 469-476, 2014.
    [46] V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lázaro, and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690-2699, 2014.

    D. Commutation Instant Tuning
    [47] M. Rodrigues, P. J. Costa Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
    [48] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [49] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    [50] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elec. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
    [51] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
    [52] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
    [53] H. N. Huang, K. W. Hu, and C. M. Liaw, “A switch-mode rectifier fed switched-reluctance motor drive with dynamic commutation shifting using DC-link current,” IET Elec. Power Appl., vol.11, no. 4, pp.640-652, 2017.
    [54] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp.445-454, Jan. 2008.
    [55] K. W. Hu, J. C. Wang, T. S. Lin, and C. M. Liaw, ”A switched- reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers. vol. 30, no. 1, pp.273-284, 2015.
    E. Current Control
    [56] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
    [57] P. Srinivas and P. V. N. Prasad, “Voltage control and hysteresis current control of a 8/6 switched reluctance motor,” in Proc. ICEMS, 2007, pp. 1557-1562.
    [58] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Elect. Power Applicat., vol. 3, no. 5, pp. 453-460, 2009.
    [59] H. Makino, T. Kosaka, and N. Matsui, “Control performance comparisons among three types of instantaneous current profiling technique for SR motor,” IET Proc. PEMD, pp. 1-6, 2014.
    [60] G. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” in Proc. IEEE IAS, 2002, vol. 2, pp. 1212-1218.
    [61] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
    [62] I. Manolas, G. Papafotiou, and S. N. Manias, “Sliding mode PWM for effective current control in switched reluctance machine drives,” in Proc. IEEE IPEC, 2014, pp. 1606-1612.
    [63] M. T. Alrifai, J. H. Chow, and D. A. Torrey, “Practical application of back stepping nonlinear current control to a switched-reluctance motor,” in Proc. IEEE ACC, 2000, vol. 1, pp. 594-599.
    [64] I. S. Manolas, A. X. Kaletsanos, and S. N. Manias, “Nonlinear current control technique for high performance switched reluctance machine drives,” in Proc. PESC, 2008, pp. 1229-1234.
    [65] S. K. Sahoo, S. K. Panda, and J. X. Xu, “Iterative learning-based high-performance current controller for switched reluctance motors,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 491-498, 2004.
    [66] S. K. Sahoo, S. Dasgupta, S. K. Panda, and J. X. Xu, “A Lyapunov function-based robust direct torque controller for a switched reluctance motor drive system,” IEEE Trans. Power Electron., vol. 27, vol. 2, pp. 555-564, 2012.
    F. Speed Control
    [67] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
    [68] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IET Proc. Electric Power Appl., vol. 148, no. 4, pp. 345-352, 2001.
    [69] M. T. Alrifai, J. H. Chow, and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IET Proc. Elect. Power Appl., vol. 150, no. 2, pp. 193-200, 2003.
    [70] C. Visa, G. Abba, and R. Leonard, “Speed control of a switched reluctance motor using non-linear methods,” in Proc. IEEE SMC, 2002, vol. 5, pp. 1-6.
    [71] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
    [72] A. Karami-Mollaee, “Sliding mode control of switch reluctance motor without chattering,” in Proc. IEEE ICEE, 2013, pp. 1-5.
    [73] L. L. N. dos Reis, F. Sobreira, A. R. R. Coelho, O. M. Almeida, J. C. T. Campos, and S. Daher, “Identification and adaptive speed control for switched reluctance motor using DSP,” in Proc. COBEP, 2009, pp. 836-841.
    [74] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    G. Single-Phase Switch-Mode Rectifiers
    [75] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE SECON, 1998, pp. 348-353.
    [76] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, vol. 3, pp. 749-755, 2003.
    [77] K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori, and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
    [78] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Elect. Power Appl., vol. 1, no. 3, pp.316-328, 2007.
    [79] Y. C. Chang and C. M. Liaw, “A flyback rectifier with spread harmonic spectrum,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, Oct. 2011.
    [80] A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM Sepic and Ćuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873-881, 2011.
    H. Energy Storage Systems
    [81] V. A. Boicea “Energy storage technologies: the past and the present,” in Proc. IEEE, 2014, vol. 102, no. 11, pp. 1777-1794.
    [82] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids- part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, 2016.
    [83] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2017.
    [84] E. L. Lustenader, R. H. Guess, E. Richter, and F. G. Turnbull, “Development of a hybrid flywheel/battery drive system for electric vehicle applications,” IEEE Trans. Vehic., vol. 26. no. 2, pp. 135-143, 1977.
    [85] K. Itani, A. D. Bernardinis, A. Jammal, “Energy management of a battery-flywheel storage system used for regenerative braking recuperation of an electric vehicle,” in Proc. IEEE IECON, 2016, pp. 2034-2039.
    [86] J. Itoh, T. Nagano, K. Tanaka, K. Orikawa, and N. Yamada “Development of flywheel energy storage system with multiple parallel drives,” in Proc. IEEE Energy Convers., 2014, pp. 4568-4575.
    [87] R. Furuta, J. Kawasaki, and K. Kondo, “Hybrid traction technologies with energy storage devices for nonelectrified railway lines,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 291-297, 2010.
    [88] M. Hino and D, Hara, “Application of an energy storage system using lithium-ion batteries for more effective regenerative energy utilization,” JR EAST Technical Review, No. 31, spring 2015, pp. 23-26.
    [89] M. Ogasa, “Application of energy storage technologies for electric railway vehicles- examples with hybrid electric railway vehicles,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 304-311, 2010.
    [90] M. Steiner, M. Klohr, and S. Pagiela, “Energy storage system with ultracaps on board of railway vehicles,” in Proc. IEEE PAE, 2007, pp. 1-10.
    [91] T. Ratniyomchai, S. Hillmansen, and P. Tricoli, “Recent developments and applications of energy storage devices in electrified railways,” IET Electr. Syst. Transp. vol. 4, no. 1, 2014.
    [92] D. Iannuzzi and P. Tricoli, “Metro trains equipped onboard with supercapacitors: a control technique for energy saving,” in Proc. IEEE SPEEDAM, 2010, pp. 750-756.
    [93] S. Tominaga, I. Suga, H. Araki, H. Ikejima, M. Kusuma, and K. Kobayashi, “Development of energy-saving elevator using regenerated power storage system,” in Proc. IEEE PCC-Osaka, 2002, vol. 2, pp. 890-895.
    [94] N. Jabbour, C. Mademlis, and I. Kioskeridis, “Improved performance in a supercapacitor- based energy storage control system with bidirectional dc-dc converter for elevator motor drives,” in Proc. IET PEMD, 2014, pp. 1-6.
    [95] K. Kafalis and A. D. Karlis, “Comparison of flywheels and supercapacitors for energy saving in elevators,” in Proc. IEEE IAS., 2016, page 1-8.
    [96] R. G. Lawrence, K. Craven, and G. D. Nichols, “Flywheel UPS,” IEEE Ind. Appl. Mag., vol. 9, no.3, pp. 44-50, 2003.
    [97] A. Kusko and J. Dedad, “Short-term and long-term energy storage methods for standby electric power systems,” IEEE Ind. Appl. Proc., 2005.
    [98] H. H. Abdeltawab and Y. A. I. Mohamed, “Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid-code constraints,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4242-4254, 2016.
    [99] B. H. Kenny, P. E. Kascak, R. Jansen, T. Dever, and W. Santiago “Control of a high-speed flywheel system for energy storage in space applications,” IEEE Trans. Ind. Appl., vol. 41, no. 4, pp. 1029-1038, 2005.
    [100] R. Arghandeh, M. Pipattanasomporn, and S. Rahman, “Flywheel energy storage systems for ride-through applications in a facility microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1955-1962, 2012.
    [101] J. Itoh, D. Sato, T. Nagano, K. Tanaka, N. Yamada, and K. Kato, “Development of high efficiency flywheel energy storage system for power load-leveling,” in Proc. IEEE INTELEC, 2014, page 1-8.
    [102] J. L. da S. Neto, L. G. B. Rolim, and G. G. Sotelo, “Control of a power circuit interface of a flywheel-based energy storage system,” in Proc. IEEE ISIE, 2003, vol. 2, pp. 962-967.
    [103] W. Gruber, T. Hinterdorfer, H. Sima, A. Schulz and J. Wassermann, “Comparison of different motor-generator sets for long term storage flywheels,” in Proc. IEEE Power Electron., Electrical Drives, Automation and Motion, pp. 161-166, 2014.
    [104] G. Cimuca, S. Breban, M. M. Radulescu, C. Saudemont, and B. Robyns, “Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variable-speed wind generator,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 526-534, 2010.
    [105] M. Mansour, S. Rachi, M. N. Mansouri, and M. F. Mimouni, “Direct torque control strategy of an induction-machine-based flywheel energy storage system associated to a variable-speed wind generator,” Energy and Power Engineering, pp. 255-263, 2012.
    [106] J. L. da S. Neto, R. de Andrade Jr., L. G. B. Rolim, A. C. Ferreira, G. G. Sotelo, W. Suemitsu, “Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system,” in Proc. IEEE ISIE, 2006, vol. 3, pp. 2492-2497.
    [107] E. Bernsmüller, L. G. B. Rolim, and A. C. Ferreira, “External rotor switched reluctance machine for a kinetic energy storage system,” in Proc. IEEE IECON, 2016, pp. 1636-1641.
    [108] J. Sun, Z. Kuang, S. Wang, and Y. Chen, “Efficiency optimal control of switched reluctance machine over wide speed range applied to flywheel energy storage system,” in Proc. IEEE EML, 2012, page 1-6.
    I. Interface Converters
    [109] N. Mohan, T.M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
    [110] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp.381-389.
    [111] Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “Optimal design of a push-pull-forward half-bridge (ppfhb) bidirectional dc–dc converter with variable input voltage,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp.2761-2771, 2012.
    [112] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol.62, no. 5, pp. 3021-3032, 2015.
    [113] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional dc–dc converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, 2015.

    QR CODE