研究生: |
洪承佑 Hong, Cheng You |
---|---|
論文名稱: |
液態鈣鈦礦太陽能電池效能衰減及腐蝕現象之研究 Study on Degradation and Corrosion of Liquid Electrolyte Type Perovskite Solar Cell |
指導教授: |
衛子健
Wei, Tzu Chien |
口試委員: |
孟慶波
Meng, Qing Bo 陳志銘 Chen, Chih Ming 馮憲平 Feng, Shien Ping |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 104 |
中文關鍵詞: | 鈣鈦礦太陽能電池 、液態電解質 、腐蝕 、效能衰減 、CH3NH3PbI3溶解 、Spiro-OMeTAD保護層 |
外文關鍵詞: | perovskite solar cell, liquid electrolyte, degradation, corrosion, dissolution of CH3NH3PbI3, Spiro-OMeTAD protecting layer |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鹵化有機金屬鈣鈦礦-CH3NH3PbI3 於2009 年開始被應用於太陽能電池中、作為高效吸光層材料,到目前為止已發展出多樣的元件結構,其中使用固態電洞傳輸材料作為電解質的元件已可達19.3%的高效率。相對而言,使用傳統含氧化還原對的液態鈣鈦礦太陽能電池雖然具有製程簡單、封裝容易、無須昂貴熱蒸鍍程序等優勢,卻面臨CH3NH3PbI3被含I-/I3-的液態電解質所腐蝕、導致效能衰減的問題,其最高效率僅達6.7%。
為了在不干擾電子傳輸的前提下提升液態鈣鈦礦太陽能電池的效能穩定性,於本研究中使用Spiro-OMeTAD作為CH3NH3PbI3與液態電解質間的保護層,有效讓元件效能穩定性提升。不過,儘管Spiro-OMeTAD保護層有助於穩定性的增進,元件效能衰減與CH3NH3PbI3被腐蝕的問題依舊存在,這除了表示保護層的製備技術須更進一步的改善外,也突顯出瞭解腐蝕現象及其發生的根本原因也相當重要。因此,本研究的後半部分藉由XRD、SEM、EDS、UV-Vis吸收光譜等方式進行分析,得到了以下幾項重要的發現:首先,在LiI/I2(I-/I3-)電解質系統下,對CH3NH3PbI3造成腐蝕的主要來源為I-,I3-則不參與腐蝕反應;其次發現元件裡同時存在有CH3NH3PbI3晶體的溶解與再沉積,使多孔層上出現微米級的巨型晶體;最後,雖然tBP本身極易腐蝕CH3NH3PbI3晶體,但當tBP是以添加劑的方式存在於電解質中時,其反而可填補CH3NH3PbI3晶體上的缺陷、進而穩定晶體,使溶解速率減緩、增進元件效能穩定性。我們認為這些發現,不但有助於理解腐蝕現象的基本原理,亦有利於在未來更進一步提升液態鈣鈦礦太陽能電池的效能與穩定性。
Organometal halide perovskite, CH3NH3PbI3, has been used as light harvester in solar cell since 2009. Perovskite solar cell has been developed diverse structures so far, and the one with solid hole transport material (HTM) as electrolyte has been achieved 19.3% power conversion efficiency. In contrast, liquid electrolyte type perovskite solar cell faces the hurdle of the degradation caused from dissolution of CH3NH3PbI3 by I-/I3--contained electrolyte, even though it possesses several advantages in terms of easy fabrication, simple sealing and no need of expensive vacuum evaporation. Thereby, its highest power conversion efficiency remains only 6.7%.
In this study, we use a commomly-used HTM, Spiro-OMeTAD, as the protecting layer between CH3NH3PbI3 and electrolyte for the purpose of isolating the physical contact of liquid electrolyte and perovskite as well as not interfering the electron transfer from electrolyte to CH3NH3PbI3. This arrangement did enhance device stability significantly but it is also found the corrosion still exists. It not only indicates the coating of protecting layer requires more engineering study but also shows the importance of digging out the root cause for corrosion.
By analyzing the results of XRD, SEM, EDS and UV-Vis spectrum, some important information is concluded. First and foremost, I3- does not involve in the corrosion reaction, while I- is the main origin of corrosion of CH3NH3PbI3 in LiI/I2 (I-/I3-)-contained electrolyte. Besides, dissolution and redeposition of CH3NH3PbI3 take place simutaneously in the device and result in the appearance of giant CH3NH3PbI3 crystals within few micrometers on the mesoporous layer. Last but not least, the common additive, tBP, in electrolyte is found to stabilize CH3NH3PbI3 degradation by filling itself at the defects on crystal, although tBP itself corrodes CH3NH3PbI3. The information discovered in this study is beneficial to understand the fundamentals of corrosion and to further improve the performance of liquid electrolyte type perovskite solar cell.
[1] U. S. E. I. A. (EIA). International Energy Statistics-Total Electricity Net Consumption. Available: http://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=2&pid=2&aid=2&cid=ww,&syid=2004&eyid=2011&unit=BKWH
[2] J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, et al., Climate change 2001: the scientific basis vol. 881: Cambridge university press Cambridge, 2001.
[3] S. C. Central. Solar markets around the world. Available: http://solarcellcentral.com/markets_page.html#tf_mkt_share
[4] J.-L. Lan, T.-C. Wei, S.-P. Feng, C.-C. Wan, and G. Cao, "Effects of Iodine Content in the Electrolyte on the Charge Transfer and Power Conversion Efficiency of Dye-Sensitized Solar Cells under Low Light Intensities," The Journal of Physical Chemistry C, vol. 116, pp. 25727-25733, 2012.
[5] P. AgroTech. Solar Panels. Available: http://pakagrotech.com/solar-panels/
[6] G. S. E. Inc. Flexible Modules. Available: http://www.globalsolar.com/products/flexible-modules/powerflex-modules
[7] SolarServer. (2012) EMCORE awarded USD 6 million contract to supply PV modules for new spacecraft. Available: http://www.solarserver.com/solar-magazine/solar-news/archive-2012/2012/kw16/emcore-awarded-usd-6-million-contract-to-supply-pv-modules-for-new-spacecraft.html
[8] K. Kalyanasundaram, Dye-sensitized Solar Cells: EFPL Press, 2010.
[9] SolarServer. (2009) Organic photovoltaics: Solarmer achieves 7.9 % NREL-certified efficiency. Available: http://www.solarserver.com/solarmagazin/news-ea2009m12.html
[10] P. S. E. C. o. Science. (2011) Record-breaking Solar Cell Announced by Multinational Research Team. Available: http://science.psu.edu/news-and-events/2011-news/Asbury9-2011
[11] O. T. P. J. Group). Perovskite Photovoltaics. Available: https://www-thz.physics.ox.ac.uk/perovskites.html
[12] U. S. D. o. E. National Center for Photovoltaics (NCPV). Research Cell Efficiency Records. Available: http://www.nrel.gov/ncpv/
[13] R. M. Hazen, "Perovskites," Scientific American, vol. 258, pp. 74-81, 1988.
[14] (1989) 變化多端的導電材料─鈦酸鈣結構物. 科學月刊. 368-371.
[15] H. J. Snaith, "Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells," The Journal of Physical Chemistry Letters, vol. 4, pp. 3623-3630, 2013.
[16] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, pp. 6050-6051, 2009.
[17] N.-G. Park, "Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell," The Journal of Physical Chemistry Letters, vol. 4, pp. 2423-2429, 2013.
[18] C. L. S. S. C. R. Group. Cava Lab: Perovskites. Available: http://www.princeton.edu/~cavalab/tutorials/public/structures/perovskites.html
[19] T. Hirano, H. Purwanto, T. Watanabe, and T. Akiyama, "Self-propagating high-temperature synthesis of Sr-doped LaMnO3 perovskite as oxidation catalyst," Journal of alloys and compounds, vol. 441, pp. 263-266, 2007.
[20] K. Huang, M. Feng, and J. B. Goodenough, "Sol‐Gel Synthesis of a New Oxide‐Ion Conductor Sr‐and Mg‐Doped LaGaO3 Perovskite," Journal of the American ceramic society, vol. 79, pp. 1100-1104, 1996.
[21] L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, and G. J. Exarhos, "Glycine-nitrate combustion synthesis of oxide ceramic powders," Materials Letters, vol. 10, pp. 6-12, 1990.
[22] C. Monterrubio-Badillo, H. Ageorges, T. Chartier, J.-F. Coudert, and P. Fauchais, "Preparation of LaMnO3 perovskite thin films by suspension plasma spraying for SOFC cathodes," Surface and Coatings Technology, vol. 200, pp. 3743-3756, 2006.
[23] Y. Chujo, "Organic—inorganic hybrid materials," Current Opinion in Solid State and Materials Science, vol. 1, pp. 806-811, 1996.
[24] K. Chondroudis and D. B. Mitzi, "Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers," Chemistry of materials, vol. 11, pp. 3028-3030, 1999.
[25] Z. Cheng and J. Lin, "Layered organic–inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering," CrystEngComm, vol. 12, pp. 2646-2662, 2010.
[26] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, et al., "Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications," Journal of Materials Chemistry A, vol. 1, pp. 5628-5641, 2013.
[27] A. Poglitsch and D. Weber, "Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy," The Journal of chemical physics, vol. 87, pp. 6373-6378, 1987.
[28] S. Kazim, M. K. Nazeeruddin, M. Gratzel, and S. Ahmad, "Perovskite as light harvester: a game changer in photovoltaics," Angewandte Chemie International Edition, vol. 53, pp. 2812-2824, Mar 10 2014.
[29] A. Kojima, K. Teshima, T. Miyasaka, and Y. Shirai, "Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2)," in Meeting Abstracts, 2006, pp. 397-397.
[30] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, "Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells," Nano letters, vol. 13, pp. 1764-1769, Apr 10 2013.
[31] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, "6.5% efficient perovskite quantum-dot-sensitized solar cell," Nanoscale, vol. 3, pp. 4088-4093, Oct 5 2011.
[32] H. Mashiyama, Y. Kurihara, and T. Azetsu, "Disordered cubic perovskite structure of CH3NH3PbX3 (X= Cl, Br, I)," Journal of the Korean Physical Society, vol. 32, pp. S156-S158, 1998.
[33] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, "Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites," Science, vol. 338, pp. 643-647, Nov 2 2012.
[34] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, et al., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, vol. 342, pp. 341-344, Oct 18 2013.
[35] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, "Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells," Energy & Environmental Science, vol. 7, pp. 982-988, 2014.
[36] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, et al., "Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells," The Journal of Physical Chemistry C, vol. 118, pp. 16458-16462, 2014.
[37] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, "Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties," Inorganic chemistry, vol. 52, pp. 9019-9038, Aug 5 2013.
[38] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (5)," in Meeting Abstracts, 2007, pp. 352-352.
[39] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, "Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-halide Compounds (11)," in Meeting Abstracts, 2008, pp. 27-27.
[40] Y. Zhao and K. Zhu, "Charge transport and recombination in perovskite (CH3NH3) PbI3 sensitized TiO2 solar cells," The Journal of Physical Chemistry Letters, vol. 4, pp. 2880-2884, 2013.
[41] W. Li, J. Li, L. Wang, G. Niu, R. Gao, and Y. Qiu, "Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance," Journal of Materials Chemistry A, vol. 1, pp. 11735-11740, 2013.
[42] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, et al., "Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%," Scientific Reports, vol. 2, 2012.
[43] T. C. Sum and N. Mathews, "Advancements in perovskite solar cells: photophysics behind the photovoltaics," Energy & Environmental Science, vol. 7, pp. 2518-2534, 2014.
[44] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, et al., "Sequential deposition as a route to high-performance perovskite-sensitized solar cells," Nature, vol. 499, pp. 316-319, Jul 18 2013.
[45] H.-S. Kim, S. H. Im, and N.-G. Park, "Organolead halide perovskite: new horizons in solar cell research," The Journal of Physical Chemistry C, vol. 118, pp. 5615-5625, 2014.
[46] J. J. Choi, X. Yang, Z. M. Norman, S. J. L. Billinge, and J. S. Owen, "Structure of methylammonium lead iodide within mesoporous titanium dioxide: active material in high-performance perovskite solar cells," Nano letters, vol. 14, pp. 127-133, Jan 8 2014.
[47] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, et al., "Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells," J Am Chem Soc, vol. 134, pp. 17396-17399, Oct 24 2012.
[48] P. P. Boix, K. Nonomura, N. Mathews, and S. G. Mhaisalkar, "Current progress and future perspectives for organic/inorganic perovskite solar cells," Materials Today, vol. 17, pp. 16-23, 2014.
[49] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, "Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells," Advanced Functional Materials, vol. 24, pp. 151-157, 2014.
[50] M. Liu, M. B. Johnston, and H. J. Snaith, "Efficient planar heterojunction perovskite solar cells by vapour deposition," Nature, vol. 501, pp. 395-398, Sep 19 2013.
[51] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, et al., "Interface engineering of highly efficient perovskite solar cells," Science, vol. 345, pp. 542-546, 2014.
[52] J. Y. Jeng, Y. F. Chiang, M. H. Lee, S. R. Peng, T. F. Guo, P. Chen, et al., "CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells," Advanced Materials, vol. 25, pp. 3727-3732, 2013.
[53] J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.-B. Song, et al., "Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility," ACS Nano, vol. 8, pp. 1674-1680, January 5 2014.
[54] C.-H. Chiang, Z.-L. Tseng, and C.-G. Wu, "Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process," Journal of Materials Chemistry A, vol. 2, pp. 15897-15903, 2014.
[55] A. Kojima, "Study on Nano-Composite Syntheses with Mesoporous Media for Energy Conversion," 2009.
[56] G. Niu, W. Li, F. Meng, L. Wang, H. Dong, and Y. Qiu, "Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells," Journal of Materials Chemistry A, vol. 2, pp. 705-710, 2014.
[57] W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, "Dye-sensitized solar cells: Scale up and current–voltage characterization," Solar Energy Materials and Solar Cells, vol. 91, pp. 1676-1680, 2007.
[58] 張育唐 and 陳藹然. (2011). X-光繞射(X-ray Diffraction)與布拉格定律(Bragg's Law). Available: http://highscope.ch.ntu.edu.tw/wordpress/?p=41141
[59] 林麗娟, "X 光繞射原理及其應用," 工業材料雜誌, vol. 86, pp. 100-109, 1994.
[60] D. A. Skoog and J. J. Leary, Principles of instrumental analysis: Saunders College Pub., 1992.
[61] 羅聖全, "研發奈米科技的基本工具之一,電子顯微鏡介紹–SEM."
[62] 民生及食品奈米科技網站. (2009). 奈米在食品科技的應用. Available: http://niufood.niu.edu.tw/nano/application/pages.php?ID=application
[63] F. Krumeich. (2012). Scanning Electron Microscopy (SEM). Available: http://www.microscopy.ethz.ch/sem.htm
[64] 黃文雄, 儀器總覽-化學分析儀器: 行政院國家科學委員會精密儀器發展中心, 2000.
[65] T. Oku, M. Zushi, Y. Imanishi, A. Suzuki, and K. Suzuki, "Microstructures and photovoltaic properties of perovskite-type CH3NH3PbI3 compounds," Applied Physics Express, vol. 7, p. 121601, 2014.
[66] I. Ding, N. Tétreault, J. Brillet, B. E. Hardin, E. H. Smith, S. J. Rosenthal, et al., "Pore‐Filling of Spiro‐OMeTAD in Solid‐State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device Performance," Advanced Functional Materials, vol. 19, pp. 2431-2436, 2009.
[67] O. E. Lanford and S. J. Kiehl, "The Solubility of Lead Iodide in Solutions of Potassium Iodide-Complex Lead Iodide Ions," Journal of the American Chemical Society, vol. 63, pp. 667-669, 1941.
[68] H. L. Clever and F. J. Johnston, "The solubility of some sparingly soluble lead salts: an evaluation of the solubility in water and aqueous electrolyte solution," Journal of Physical and Chemical Reference Data, vol. 9, pp. 751-784, 1980.
[69] Y. Fu, F. Meng, M. B. Rowley, B. J. Thompson, M. J. Shearer, D. Ma, et al., "Solution Growth of Single Crystal Methylammonium Lead Halide Perovskite Nanostructures for Optoelectronic and Photovoltaic Applications," Journal of the American Chemical Society, vol. 137, pp. 5810-5818, 2015.
[70] Z. Kebede and S.-E. Lindquist, "Donor–acceptor interaction between non-aqueous solvents and I2 to generate I3-, and its implication in dye sensitized solar cells," Solar Energy Materials and Solar Cells, vol. 57, pp. 259-275, 1999.
[71] J. V. Alemán, A. V. Chadwick, J. He, M. Hess, K. Horie, R. G. Jones, et al., "Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007)," Pure and Applied Chemistry, vol. 79, pp. 1801-1829, 2007.
[72] G. Boschloo, L. Häggman, and A. Hagfeldt, "Quantification of the effect of 4-tert-butylpyridine addition to I-/I3-redox electrolytes in dye-sensitized nanostructured TiO2 solar cells," The Journal of Physical Chemistry B, vol. 110, pp. 13144-13150, 2006.
[73] S. Zhang, X. Yang, C. Qin, Y. Numata, and L. Han, "Interfacial engineering for dye-sensitized solar cells," Journal of Materials Chemistry A, vol. 2, pp. 5167-5177, 2014.
[74] W. Li, H. Dong, L. Wang, N. Li, X. Guo, J. Li, et al., "Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination," Journal of Materials Chemistry A, vol. 2, pp. 13587-13592, 2014.
[75] C. Shi, S. Dai, K. Wang, X. Pan, F. Kong, and L. Hu, "The adsorption of 4-tert-butylpyridine on the nanocrystalline TiO 2 and Raman spectra of dye-sensitized solar cells in situ," Vibrational Spectroscopy, vol. 39, pp. 99-105, 2005.
[76] N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, et al., "Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites," ACS nano, vol. 8, pp. 9815-9821, 2014.