簡易檢索 / 詳目顯示

研究生: 黃柏嘉
Huang, Po-Chia
論文名稱: 螺旋軌道多針孔單光子發射斷層掃描於疊代式影像重建法中體素基準系統模型之研究
A Voxel-Driven System Model in Iterative Image Reconstruction for Helical Trajectory Multi-Pinhole SPECT
指導教授: 許靖涵
Hsu, Ching-Han
口試委員: 周文采
蕭穎聰
陳怡君
周呈霙
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 53
中文關鍵詞: 針孔單光子發射斷層掃描多針孔螺旋形軌道射束追蹤模型單射束射束追蹤多射束射束追蹤體素基準模型
外文關鍵詞: Pinhole SPECT, multi-pinhole, helical tractory, ray-tracing(RT) model, SRRT, MRRT, Voxel-Driven model
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 針孔單光子發射斷層掃描成像系統已被廣泛應用於小動物實驗中。在此基礎之上,使用多針孔準直儀可以增加成像系統的靈敏度而螺旋形偵收軌道則可以進一步增加視野或成像系統照野大小。傳統的針孔單光子發射斷層掃描所使用的系統模型為射束追蹤法,包含了單射束射束追蹤與多射束射束追蹤演算法。然而,在所有的射束追蹤法的演算法皆沒有辦法處裡針孔之有限孔徑與單光子發射斷層掃描的深度效應問題。在此研究中,我們提出一個全新的系統模型計算方式來模擬光子的發射與偵收模式,稱為體素基準模型。體素基準模型是透過幾何計算而得,此模型同時包含了有針孔限孔徑與單光子發射斷層掃描之深度效應的資訊。此外,射束追蹤法會造成的資料遺失現象也不會在體素基準模型中發生。結果顯示,使用體素基準模型在多針孔系統中,能重建出較高品質的影像,並且可以判斷體素基準模型亦適用於螺旋形軌道偵收系統。多針孔螺旋形偵收系統乃是一個高空間解析度與大照野的成像系統,而體素基準模型除了適用於這個成像系統外,更可以進一步提高影像品質,進而可以大幅提高針孔單光子發射斷層掃描有更高的臨床實驗與研究的可用性。


    Pinhole SPECT imaging systems are widely used in small animal studies. The multi-pinhole system improves the low sensitivity while the helical trajectory system improves the field of view (FOV) size. Conventional system model for the pinhole system is based on ray-tracing (RT) algorithm including single-ray ray-tracing (SRRT) and multi-ray ray-tracing (MRRT).However, the RT series algorithm could not solve the finite aperture effect
    and depth effect in a pinhole SPECT system. Moreover, both SRRT andMRRT algorithm may cause missing information because of characteristic
    geometry of pinhole collimator. Here, we proposed a new system model
    called voxel-driven (VD) model to describe the emission and detection of photons. The VD model are calculated based on geometry and this model accounts for both depth effect and finite aperture for pinhole SPECT imaging system. The missing-information phenomenon caused by RT algorithm won’t happen in this model. The results show that using VD model can improve the reconstructed images’ quality and this model are also suitable to be applied in helical trajectory pinhole SPECT system. Multi-pinhole and helical trajectory pinhole SPECT is a high resolution and larger FOV imaging system, and VD model is not only suitable for this imaging system but also able to further improve the image quality.

    1 Introduction 1.1 Small Animal studies 1.2 Pinhole SPECT 1.3 System Models 1.3.1 Iterative Reconstruction 1.3.2 Direct Measurement 1.3.3 SRRT 1.3.4 MRRT 1.4 Multi-pinhole Imaging System 1.5 Propose 2 System Model 2.1 Voxel-Driven Model 2.2 Probability Value 2.2.1 Covered Area and Sub-detector System 2.2.2 Precision and Sub-detector Number 3 Mathematical Derivation for VD 3.1 Circular Projection 3.2 Elliptic Projection 3.3 Dual-Half-Elliptic Projection 4 Multi-Pinhole 4.1 Hardware Parameters 4.2 Multi-pinhole Design 4.3 Symmetries in Multi-pinhole Collimator Imaging System 4.4 Experimental Design 4.5 Results and Discussion 4.5.1 The General Form and Characteristics for VD Model 4.5.2 Point Source 4.5.3 Non-overlapping Projection Sphere Phantom 4.5.4 Overlapping Projection Sphere Phantom 4.5.5 Storage of System Matrices 5 Helical Trajectory Pinhole 5.1 Hardware Parameters 5.2 Experimental Design 5.3 Symmetries in Helical Trajectory Pinhole Collimator 5.4 Results and Discussion 6 Conclusions and Future Works Appendix A Ray Tracing Algorithm

    [1] G. L. Zeng and D. Gagnon, “CdZnTe Strip Detector SPECT Imaging With a Slit Collimator,” Physics in Medicine and Biology, vol. 49, pp. 2257–2271, 2004.
    [2] S. Walrand, F. Jamar, M. Jong, and I. W. Pang, “Evaluation of Novel Whole-Body High-Resolution Rodent SPECT (Linoview) Based on Direct Acquisition of Linogram Projections,” The Journal of Nuclear Medicine, vol. 46, no. 11, pp. 1872–1880, 2005.
    [3] R. Holen, V. S., S. Staelens, and I. Lemahieu, “Comparing Planar Image Quality of Rotating Slat and Parallel Hole Collimator: Influence of System Modeling,” Physics in Medicine and Biology, vol. 53, pp. 1989–2002, 2008.
    [4] T. Ma, R. Yao, and Y. Shao, “Determination of Geometric Parameters for Slit-slat SPPECT Imaging of MicroPET,” in IEEE Nuclear Science Symposium Conference Record, 2007, pp. 4285–4288.
    [5] M. A. Kupinski and H. H. Barrett, Eds., Small-Animal SPECT Imaging. Springer, 2005.
    [6] J. Nuyts, K. Vunckx, M. Defrise, and C. Vanhove, “Small Animal Imaging with Multi-pinhole SPECT,” Methods, vol. 48, pp. 83–91, March 2009.
    [7] F. J. Beekman, F. van der Have, B. Vastenhouw, A. J. A. van der Linden, P. P. van Rijk, J. P. H. Burbach, and M. P. Smidt, “U-SPECT-I: A Novel System for Submillimeter-Resolution Tomography with Radiolabeled Molecules in Mice,” The Journal of nuclear medicine, vol. 46, no. 7, pp. 1194–1200, July 2005.
    [8] F. van der Have, B. Vastenhouw, R. M. Ramakers, W. Branderhorst, J. O. Krah, S. G. S. C. Ji, and F. J. Beekman, “U-SPECT-II: An Ultra-High-Resolution Device for Molecular Small-Animal Imaging,” The Journal of Nu-clear Medicine, vol. 50, no. 4, pp. 599–605, April 2009.
    [9] H. K. Tuy, “An Inversion Formula for Cone-beam Reconstruction,” Society for Industrial and Applied Mathematics, vol. 43, no. 3, pp. 546–552, April
    1983.
    [10] M. Defrise and R. Clack, “A Cone-Beam Reconstruction Algorithm Using Shift-Variant Filtering and Cone-Beam Backprojection,” IEEE Transaction on Medical Imaging, vol. 13, no. 1, pp. 186–195, March 1994.
    [11] L. A. Shepp and Y. Vardi, “Maximum Likelihood Reconstruction for Emission Tomography,” IEEE Transactions on Medical Imaging, vol. 1, no. 2, pp. 113–
    122, Oct. 1982.
    [12] H. Hudson and R. Larkin, “Accelerated Image Reconstruction Using Ordered Subsets of Projection Data,” IEEE Transactions on Medical Imaging, vol. 13, no. 4, pp. 601–609, Dec. 1994.
    [13] K. J. Rowe, J. N. Arasvold, H. H. Barrett, J. C. Chen, W. P. Klein, M. B. A., I. W. Pang, D. D. Patton, and T. A. White, “A Stationary Hemispherical SPECT Imager for Three-Dimensional Brain Imaging,” The Journal of
    Nuclear Medicine, vol. 34, no. 3, pp. 474–480, March 1993.
    [14] L. Furenlid, D. W. Wilson, Y. Chen, H. Kim, P. J. Pietraski, M. J. Crawford, and H. H. Barrett, “FastSPECT II: A Second-Generation High-Resolution
    Dynamic SPECT Imager,” IEEE Transactions on Nuclear Science, vol. 51, no. 3, pp. 631–634, June 2004.
    [15] F. V. Have, B. Vastenhouw, M. Rentmeester, and F. J. Meekman, “System Calibration and Statistical Image Reconstruction for Ultra-High Resolution Stationary Pinhole SPECT,” IEEE Transactions on Medical Imaging, vol. 27, no. 7, pp. 960–971, July 2008.
    [16] R. L. Siddon, “Fast Calculation of the Exact Radiological Path for a Three-Dimensional CT Array,” Medical Physics, vol. 12, no. 2, pp. 252–255, 1985.
    [17] G. Han, Z. Liang, and J. You, “A Fast Ray-Tracing Technique for TCT and RCT stidies,” Nuclear Science Symposium, 1999. Conference Record. 1999 IEEE, vol. 3, pp. 1515–1518, 1999.
    51
    [18] C. Vanhove, A. Andryev, D. M., J. Nuyts, and A. Bossuyt, “Resolution Recovery in Pinhole SPECT Based on Multi-ray Projections: a Phantom Study,” European Journal of Nuclear Medicine, vol. 34, no. 2, pp. 170–180, 2007.
    [19] B. M. W. Tsui and G. G. T., “The Geometric Transfer Function for Cone and Fan Beam Collimators,” Physics in Medicine and Biology, vol. 24, no. 1, pp. 81–92, 1990.
    [20] G. L. Zeng, G. T. Gullberg, B. M. W. Tsui, and T. J. A., “Three-dimensional Iterative Reconstruction Algorithm with Attenuation and Geometric Point Response Correction,” IEEE Transactions on Nuclear Science, vol. 28, pp. 693–702, April 1991.
    [21] N. Schramm, G. Ebel, U. Engeland, T. Schurrat, M. Behe, and T. Behr, “High-Resolution SPECT Using Multipinhole Collimation,” Nuclear Science, IEEE Transactions on, vol. 50, no. 3, pp. 315–320, June 2003.
    [22] A. Andreyev, M. Defrise, and C. Vanhove, “Pinhole SPECT Reconstruction
    Using Blobs and Resolution Recovery,” IEEE Transaction on Nuclear Science, vol. 53, no. 5, pp. 2719–2728, October 2006.
    [23] B. Feng, M. Chen, B. Bai, A. M. Smith, D. W. Austin, R. A. Mintzer, D. Os-borne, and J. Gregor, “Modeling of the Point Spread Function by Numerical Calculations in Single-Pinhole and Multipinhole SPECT Reconstruction,”
    IEEE Transactions on Nuclear Science, vol. 57, no. 1, pp. 173–180, 2010.
    [24] K. Vunckx, P. Suetens, and J. Nuyts, “Effect of Overlapping Projections on Reconstruction Image Quality in Multipinhole SPECT,” IEEE Transactions
    on Medical Imaging, vol. 27, no. 7, pp. 972–983, July 2008.
    [25] T. Soesbe, M. Lewis, E. Richer, N. Slavine, and P. Antich, “Development
    and Evaluation of an EMCCD Based Gamma Camera for Preclinical SPECT
    Imaging,” IEEE Transactions on Nuclear Science, vol. 54, no. 5, pp. 1516–1524, 2007.
    [26] H. Jaroslav, “CCM-a New Low-Noise Charge Carrier Multiplier Suitable for
    Detection of Charge in Small Pixel CCD Image Sensors,” Electron Devices, IEEE Transactions on, vol. 39, no. 8, pp. 1972–1975, 1992.
    [27] G. Knoll, Radiation Detection and Measurement, 4th ed. J. Wiley and Sons, 2010.
    [28] C. H. Hsu and P. Huang, “A Geometric System Model of Finite Aperture in Small Animal Pinhole SPECT Imaging,” Computerized Medical Imaging and Graphics, vol. 30, no. 3, pp. 181 – 185, 2006.
    [29] P. C. Huang, C. H. Hsu, I. T. Hsiao, and K. M. Lin, “An Accurate and Efficient System Model of Iterative Image Reconstruction in High-resolution Pinhole SPECT for Small Animal Research,” Journal of Instrumentation,
    vol. 4, p. P06007, 2009.
    [30] S. J. et al., “GATE: a simulation toolkit for PET and SPECT,” Physics in
    Medicine and Biology, vol. 49, no. 19, p. 4543, 2004. [Online]. Available:
    http://stacks.iop.org/0031-9155/49/i=19/a=007
    [31] V. I.-Jost, P. Choquet, S. Salmon, C. Blondet, E. Sonnendrcker, and A. Constantinesco, “Pinhole SPECT Imaging: Compact Projection/Backprojection Operator for Efficient Algebraic Reconstruction,” IEEE Transactions on Medical Imaging, vol. 25, pp. 158–167, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE