研究生: |
黃子祐 Huang, Tzu-Yu |
---|---|
論文名稱: |
32 x 32 CMOS 微機電電容式觸覺感測器之開發 Development of 32 x 32 CMOS MEMS Capacitive Tactile Sensors |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: |
林凡異
Lin, Fan-Yi 鄭裕庭 Cheng, Yu-Ting |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 電容感測 、觸覺感測 、靜態感測 、動態感測 |
外文關鍵詞: | Capacitive, Tactile sensing, Static measurement, Dynamic measurement |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著機器人產業的快速發展,使得觸覺感測的研究也越來越熱門,透過CMOS標準製程來設計電容式觸覺感測晶片,能同時有體積小和成本低的優勢,此外,本論文在設計上不同於一般靜態量測,電路使用高頻操作以利動態訊號量測。
本研究提出一種CMOS電容式觸覺感測晶片,利用硫酸濕蝕刻、反應離子蝕刻等後製程步驟來產生32×32感測陣列,每個感測元件由金屬層和介電層組合而成,結構分為上下電極,上電極用來接觸外力做感測,下電極為固定電極連接電路,晶片的面積大小為6760μm×4600μm,觸覺感測陣列面積為4800μm×2400μm,在實驗時,透過自製印章以及探針可以分別做靜態和動態的量測。
本感測晶片透過將電極形狀設計為八角形來提高晶片的有效感測面積,模擬上最大量測壓力為1.5kPa;在量測上,結構感測度為8.161 fF/kPa,在4 MHz訊號積分時間下,輸出訊號感測度為 27.2mV/kPa。在動態量測方面,可以得到針和印章碰撞到晶片表面的連續變化結果。
With the rapid development of the robotics industry, the research on tactile sensing has become more and more popular. The design of capacitive tactile sensing chips through the CMOS standard process can simultaneously have the advantages of small size and low cost. In addition, this paper is different from general static measurement, the circuit uses high frequency operation to facilitate dynamic signal measurement.
This research proposes a CMOS capacitive touch sensor chip, which uses sulfuric acid wet etching, reactive ion etching and other post-process steps to produce a 32×32 sensing array. Each sensing element is composed of CMOS metal layer and inter-metal dielectric layers. The structure is divided into upper and lower electrodes. The upper electrode is used for sensing external force, and the lower electrode is a fixed electrode connecting to the sensing circuit. The area of the chip is 6760μm×4600μm, and the area of the tactile sensing array is 4800μm×2400μm. In the experiment, the self-made seal and the probe can be used for static and dynamic measurements.
This sensor chip promotes the effective sensing area of the chip by designing the electrode shape as an octagonal shape. The maximum measurement pressure is 9000Pa , and the measurement result is 8.161fF/kPa. Under the 4MHz signal integration time, the output signal sensitivity is 27.2mV/kPa. In terms of dynamic measurement, it can be obtained that the probe and the self-made seal hit the chip surface as a result of continuous changes.
[1] R. Surapaneni, Q. Guo, Y. Xie, D. Young and C. Mastrangelo, "A three-axis high-resolution capacitive tactile imager system based on floating comb electrodes", Journal of Micromechanics and Microengineering, vol. 23, no. 7, pp.075004, May. 2013.
[2] M. Cheng, C. Lin, Y. Lai and Y. Yang, "A polymer-based capacitive sensing array for normal and shear force measurement", Sensors, vol. 10, no. 11, pp.10211-10225, Oct. 2010.
[3] H. K. Lee, S. Chang and E. Yoon, "A flexible polymer tactile sensor: fabrication and modular expandability for large area deployment", Journal of Microelectromechanical Systems, vol. 15, no. 6, pp.1681-1686, Oct. 2006.
[4] H. K. Lee, S. Chang and E. Yoon, "Normal and shear force measurement using a flexible polymer tactile sensor with embedded multiple capacitors", Journal of Microelectromechanical Systems, vol. 17, no. 4, pp.934-942, Aug. 2008.
[5] S. C. B. Mannsfeld, B. C. K. Tee, R. M. Stoltenberg, C. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese and Z. N. Bao, "Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers", Nature Materials, vol. 9, no. 10, pp.859-864, Sep. 2010.
[6] W. Thomson, "XIX. On the electro-dynamic qualities of metals:—Effects of magnetization on the electric conductivity of nickel and of iron", Proceedings of the Royal Society of London, vol. 8, pp.546-550, Jan. 1857.
[7] M. Shikida, T. Shimitzu, K. Sato and K. Itoigawa, "Active tactile sensor for detecting contact force and hardness of an object", Sensors and Actuators A:Physical, vol. 103, no. 1-2, pp.213-218, Sep. 2003.
[8] G .M. Krishna and K. Rajanna, "Tactile sensor based on piezoelectric resonance", IEEE Sensors Journal, vol. 4, no. 5, pp.691-697, Oct. 2004.
[9] J. Dargahi, "A piezoelectric tactile sensor with three sensing elements for robotic, endoscopic and prosthetic applications", Sensors and Actuators A: Physical, vol. 1, no. 80, pp.23-30, Mar. 2000.
[10] R. Ahmadi, M. Packirisamy, J. Dargahi and R. Cecere, "Discretely Loaded Beam-Type Optical Fiber Tactile Sensor for Tissue Manipulation and Palpation in Minimally Invasive Robotic Surgery", IEEE Sensors Journal, vol. 12, no. 1, pp.22-32, Jan. 2012.
[11] J. K. Mills and A. A. Goldenberg, "Force and position control of manipulators during constrained motion tasks", IEEE Transactions on Robotics and Automation, vol. 5, no. 1, pp.30-46, Feb. 1989.
[12] J. S. Han, T. Kadowaki, K. Sato and M. Shikida, "Thermal analysis of fingerprint sensor having a microheater array", MHS'99. Proceedings of 1999 International Symposium on Micromechatronics and Human Science, Nov. 1999.
[13] C. Kukjin and K. Wise, "A high-performance silicon tactile imager based on a capacitive cell", IEEE Transactions on Electron Devices, vol. 32, no. 7, pp.1196-1201, Jul. 1985.
[14] J. Liu, Y. Hsiung, and M. Lu, "A CMOS Micromachined Capacitive Sensor Array for Fingerprint Detection", IEEE Sensors Journal, vol. 12, no. 5, pp.1004-1010, May. 2012.
[15] G. Liang, D. Mei, Y. Wang and Z. Chen, "Modeling and Analysis of a Flexible Capacitive Tactile Sensor Array for Normal Force Measurement", IEEE Sensors Journal, vol. 14, no. 11, pp.4095-4103, Jun. 2014.
[16] G. Schwartz, B. Tee, J. Mei, A. Appleton, D. Kim, H. Wang and Z. Bao, "Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring", Nature Communications, vol. 4, no. 1, May. 2013.
[17] L. Wang, H. Peng, X. Wang, X. Chen, C. Yang, B. Yang and J. Liu, "PDMS/MWCNT-based tactile sensor array with coplanar electrodes for crosstalk suppression", Microsystems & Nanoengineering, vol. 2, no. 1, Dec. 2016.
[18] B. Tee, A. Chortos, R. Dunn, G. Schwartz, E. Eason, and Z. Bao, "Tunable Flexible Pressure Sensors using Microstructured Elastomer Geometries for Intuitive Electronics", Advanced Functional Materials, vol. 24, no. 34, pp.5427-5434, Jul. 2014.
[19] G. Liang, Y. Wang, D. Mei, K. Xi and Z. Chen, "Flexible Capacitive Tactile Sensor Array With Truncated Pyramids as Dielectric Layer for Three-Axis Force Measurement", Journal of Microelectromechanical Systems, vol. 24, no. 5, pp.1510-1519, Apr. 2015.
[20] J. Dobrzynska and M. Gijs, "Polymer-based flexible capacitive sensor for three-axial force measurements", Journal of Micromechanics and Microengineering, vol. 23, no. 1, pp.015009, Nov. 2012.
[21] H. Tomlinson and W. G. Adams, "On the increase in resistance to the passage of an electric current produced on certain wires by stretching", Proceedings of the Royal Society of London, vol. 26, no. 179-184, pp.401-410, Jan. 1878.
[22] H. Tomlinson and W. G. Adams, "The influence of stress and strain on the action of physical forces", Philosophical Transactions of the Royal Society of London, vol. 174, pp.1-172, Jan. 1883.
[23] J. C. Sanchez and W. V. Wright, "Semiconductor and Conventional Strain Gages " , Journal of the Franklin Institute, vol. 275, no. 1, pp.62, 1963.
[24] W. P. Maszara, G. Goetz, A. Caviglia and J. B. McKitterick, "Silicon-on-insulator by wafer bonding and etch-back" , SOS/SOI Technology Workshop, Oct. 1988.
[25] L. Wang and D. J. Beebe, "A silicon-based shear force sensor: development and characterization", Sensors and Actuators A: Physical, vol. 84, no. 1-2, pp.33-44, Jul. 2000.
[26] J. Hwang, J. Jang, K. Hong, K. N. Kim, J. H. Han, K. Shin, C. E. Park, "Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors", Carbon, vol. 49, no. 1, pp.106-110, Jan. 2011.
[27] C. Chi, X. Sun, T. Li, X. Shu, N. Xue, C. Liu, "A Flexible Tactile Sensor With Good Consistency", IEEE Access, vol. 6, pp.51647-51654, Sep. 2018.
[28] A. Spanu, L. Pinna, F. Viola, L. Seminara, M. Valle, A. Bonfiglio, P. Cosseddu, " A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor", Organic Electronics, vol. 36, pp. 57-60, Sep. 2016.
[29] L. Seminara, L. Pinna, M. Valle, L. Basirico, A. Loi, P. Cosseddu, A. Bonfiglio, A. Ascia, M. Biso, A. Ansaldo, D. Ricci and G. Metta, "Piezoelectric polymer transducer arrays for flexible tactile sensors", IEEE Sensors Journal, vol. 13, no. 10, pp.4022-4029, Jun. 2013.
[30] M. S. Kim, H. R. Ahn, S. Lee, C. Kim and Y. J. Kim, "A dome-shaped piezoelectric tactile sensor arrays fabricated by an air inflation technique", Sensors and Actuators A: Physical, vol. 212, pp.151-158, Jun. 2014.
[31] C. H. Chuang, T. H. Li, I. C. Chou and Y. J. Teng, "Piezoelectric tactile sensor for submucosal tumor detection in endoscopy", Sensors and Actuators A: Physical, vol. 244, pp.299-309, Jun. 2016.
[32] W. Liu, P. Yu, C. Gu, X. Cheng and X. Fu, "Fingertip piezoelectric tactile sensor array for roughness encoding under varying scanning velocity", IEEE Sensors Journal, vol. 17, no. 21, pp.6867-6879, Sep. 2017.
[33] W. T. Navaraj, and R. Dahiya, "Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli", Advanced Intelligent Systems, vol. 1, no. 7, pp.1900051, Sep. 2019.
[34] D. T. Jenstrom and C. L. Chen, "A fiber optic microbend tactile sensor array", Sensors and Actuators, vol. 20, no. 3, pp.239-248, Dec. 1989.
[35] C. Ledermann, J. Hergenhan, O. Weede and H. Woern, "Combining shape sensor and haptic sensors for highly flexible single port system using Fiber Bragg sensor technology", Proceedings of 2012 IEEE/ASME 8th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Jul. 2012.
[36] J. Song, Q. Jiang, Y. Huang, Y. Li, Y. Jia, X. Rong, R. Song and H. Liu, "Research on pressure tactile sensing technology based on fiber Bragg grating array", Photonic Sensors, vol. 5, no. 3, pp.263-272, Jun. 2015.
[37] G. J. Monkman and P. M. Taylor, "Thermal tactile sensing", IEEE Transactions on Robotics and Automation, vol. 9, no. 3, pp.313-318, Jun. 1993.
[38] D. C. Spray, "Cutaneous Temperature Receptors", Annual Reviews Physiol, vol. 48, pp.625-638, 1986.
[39] C. H. Lin, T. W. Erickson, J. A. Fishel, N. Wettels and G. E. Loeb, "Signal processing and fabrication of a biomimetic tactile sensor array with thermal,force and microvibration modalities", 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dec. 2009.
[40] J. Wade, T. Bhattacharjee, R. D. Williams and C. C. Kemp, "A force and thermal sensing skin for robots in human environments", Robotics and Autonomous Systems, vol. 96, pp.1-14, Oct. 2017.
[41] Z. Chu, P. M. Sarro and S. Middelhoek, "Silicon three-axial tactile sensor", Sensors and Actuators A: Physical, vol. 54, no. 1-3, pp.505-510, Jun. 1996.
[42] N. Sato, S. Shigematsu, H. Morimura, M. Yano, K. Kudou, T. Kamei and K. Machicha, "Novel surface structure and its fabrication process for MEMS fingerprint sensor", IEEE Transactions on Electron Devices, vol. 52, no. 5, pp.1026-1032, Apr. 2005.
[43] T. Salo, K. U. Kirstein, T. Vancura and H. Baltes, "CMOS-based tactile microsensor for medical instrumentation", IEEE Sensors Journal, vol. 7, no. 2, pp.258-265, Jan. 2007.
[44] Y. C. Liu, C. M. Sun, L. Y. Lin, M. H. Tsai and W. Fang, "Development of a CMOS-based capacitive tactile sensor with adjustable sensing range and sensitivity using polymer fill-in", Journal of Microelectromechanical Systems, vol. 20, no. 1, pp.119-127, Feb. 2011.
[45] T. H. Tsai, H. C. Tsai and T. K. Wu, "A CMOS micromachined capacitive tactile sensor with integrated readout circuits and compensation of process variations", IEEE Transactions on Biomedical Circuits and Systems, vol. 8, no. 5, pp.608-616, Oct. 2014.
[46] M. L. Hsieh, S. K. Yeh, J. H. Lee, M. C. Cheng and W. Fang, "CMOS-MEMS capacitive tactile sensor with vertically integrated sensing electrode array for sensitivity enhancement", Sensors and Actuators A: Physical, vol. 317, pp.112350, Jan. 2021.