研究生: |
蕭宇正 Shiau, Yu-Cheng |
---|---|
論文名稱: |
具新穎透明電極及水平傾向分子之有機及鈣鈦礦光電元件 Organic and Perovskite Optoelectronic Devices with Novel Transparent Electrodes and Horizontally Oriented Molecules |
指導教授: |
林皓武
Lin, Hao-Wu |
口試委員: |
朱治偉
Chu, Chih-Wei 周鶴修 Chou, Ho-Hsiu 劉舜維 Liu, Shun-Wei 張志豪 Chang, Chih-Hao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 165 |
中文關鍵詞: | 透明電極 、有機發光二極體 、有機太陽能電池 、鈣鈦礦太陽能電池 、奈米銀線 、介電層/金屬/介電層 |
外文關鍵詞: | Transparent electrodes, Organic light emitting diodes, Organic solar cells, Perovskite solar cells, Silver nanowires, Dielectric/metal/dielectric |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究以新穎透明電極應用於有機與鈣鈦礦光電元件上與發光分子偶極矩排列對元件表現的影響。
首先,介紹透明電極目前發展現況,再詳細介紹奈米銀線與介電層/金屬/介電層透明電極,並且介紹透明電極片電阻之量測原理。接著簡介有機發光二極體之發展歷史、複合放光原理、外部量子效率決定因子與放光膜態。
論文的第二部分,將探討如何降低奈米銀線間之接觸電阻,並進而降低奈米銀線網絡之片電阻。我們以電熔接氧化鋅於奈米銀線之接點,使奈米銀線網絡之片電阻大幅從1300 ohm sq-1降低至13 ohm sq-1,並維持92%之高穿透度,最後應用於高效率透明加熱器上。
論文的第三部分,將探討如何降低介電層/金屬/介電層透明電極中的金屬最低成膜厚度,並證明高折射率之介電層底層扮演著提升透明電極穿透度的重要角色。我們以高折射率之金屬氧化物Nb2O5做為金屬的下層介電層,降低了金屬Ag之最低成膜厚度至5 nm,並具有96%之高穿透度,最後應用於PTB7:PC71BM有機太陽能電池與CH3NH3PbI3鈣鈦礦太陽能電池上,元件之能量轉換效率分別達到8.82%與15.1%。
論文的第四部分,將介紹發光分子之偶極矩量測方式與原理,並針對不同主客體搭配之偶極矩排列進行分析。一體積較大的主體分子TCTA搭配一長棒狀的客體發光分子BCzVBi具有高水平偶極矩比例達0.94,並以光學模擬演示若此主客體搭配應用於有機發光二極體元件之發光層,經光學優化後之外部耦合效率將高達39%。
論文的第五部分,將介紹如何增益有機發光二極體元件之外部耦合效率。藉由薄金屬促使之微共振腔效應、具水平偶極矩排列之發光層與外加半球透鏡,成功製作出外部量子效率高達71.5%之有機發光二極體元件,並藉由光學膜態分析證實此方法能分別取出大量的波導膜態、表面電漿膜態與基板膜態。
In this thesis, I focused on the organic and perovskite optoelectronic devices based on novel transparent electrodes and study the influence of the horizontally oriented emitters on the device efficiencies of OLEDs.
In the first part of this thesis, I briefly reviewed the history of transparent electrodes and further introduced the silver nanowires and dielectric/metal/dielectric (DMD) transparent electrodes. The history of OLEDs, principle of exciton recombination, factors of external quantum efficiency and mode analysis were also briefly discribed.
In the second part, I studied the methods of reducing the contact resistance between silver nanowires in order to reduce the sheet resistance of the silver nanowire matrix. By electrically-driven nanoscale ZnO nucleation at the junctions, ~ 2 orders of magnitude reduction of sheet resistance and high transmittance of 92% can be achieved. I then demonstrated the highly efficient transparent heaters utilizing these novel transparent electrodes.
In the third part, I focused on the reduction of the percolation limit of Ag thickness for the DMD transparent electrodes and proved that high refractive index (n) of the dielectric layer was essential for achieving high transmittance of the DMD electrodes. By utilizing high n Nb2O5 as the Ag wetting layer, percolation limit of down to 5 nm and high transmittance of 96% can be achieved. Poly ({4,8-bis [(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl}{3-fluoro-2-[(2- ethylhexyl)carbonyl]thieno [3,4-b]thiophenediyl}):[6,6]-phenyl C71 butyric acid methyl ester (PTB7:PC71BM) organic solar cells and CH3NH3PbI3 perovskite solar cells based on these DMD electrodes were finally demonstrated which showed power conversion efficiencies of up to 8.82% and 15.1%, respectively.
In the fourth part, I introduced the principle and the measurement of emission dipole orientation and studied the horizontal dipole ratios (Θ) of various organic host-guest systems. Larger host molucules, Tris(4-carbazoyl-9-ylphenyl)amine (TCTA) combined with stick-like guest molucules, 4,4'-Bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl (BCzVBi) possessed a high Θ of 0.94. Optical simulation showed that the out-coupling efficiency could achieve 39% if TCTA:BCzVBi was used as the emission layer of OLEDs.
In the fifth part, I focused on the enhancement of the out-coupling efficiency of OLEDs. By combining the thin-metal-induced microcavity effect, horizontally oriented emitter and hemispheric lens, external quantum efficiency of 71.5% was achieved. Optical simulation also showed that these light extraction techniques could successfully couple the waveguide mode, the surface plasmon mode and the substrate mode out of the devices.
[1] S. R. Forrest, Nature 2004, 428, 911.
[2] J. Xue, Polym. Rev. 2010, 50, 411.
[3] W. Cao, J. Xue, Energy Environ. Sci. 2014, 7, 2123.
[4] N. Espinosa, M. Hosel, D. Angmo, F. C. Krebs, Energy Environ. Sci. 2012, 5, 5117.
[5] K. H. Kim, J. L. Liao, S. W. Lee, B. Sim, C. K. Moon, G. H. Lee, H. J. Kim, Y. Chi, J. J. Kim, Adv. Mater. 2016, 28, 2526.
[6] K.-H. Kim, E. S. Ahn, J.-S. Huh, Y.-H. Kim, J.-J. Kim, Chem. Mater. 2016, 28, 7505.
[7] G. Li, R. Zhu, Y. Yang, Nat. Photon. 2012, 6, 153.
[8] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Prog. Photovoltaics Res. Appl. 2015, 23, 1.
[9] X. Li, D. Bi, C. Yi, J. D. Decoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Gratzel, Science 2016, 353, 58.
[10] M. Saliba, T. Matsui, K. Domanski, J. Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J. P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Science 2016, 354, 206.
[11] C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
[12] C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 1987, 51, 913.
[13] D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482.
[14] J. Krantz, M. Richter, S. Spallek, E. Spiecker, C. J. Brabec, Adv. Funct. Mater. 2011, 21, 4784.
[15] A. Sandstrom, H. F. Dam, F. C. Krebs, L. Edman, Nat. Commun. 2012, 3, 1002.
[16] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, B. H. Hong, Nature 2009, 457, 706.
[17] S.-I. Na, S.-S. Kim, J. Jo, D.-Y. Kim, Adv. Mater. 2008, 20, 4061.
[18] D. Gupta, M. M. Wienk, R. A. J. Janssen, Adv. Energy Mater. 2013, 3, 782.
[19] F. Zhang, M. Johansson, M. R. Andersson, J. C. Hummelen, O. Inganäs, Adv. Mater. 2002, 14, 662.
[20] W. Gaynor, J. Y. Lee, P. Peumans, ACS Nano 2010, 4, 30.
[21] W. Cao, J. Li, H. Chen, J. Xue, J. Photon. Energy 2014, 4, 040990.
[22] J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Nano Lett. 2008, 8, 689.
[23] V. Bhosle, J. T. Prater, F. Yang, D. Burk, S. R. Forrest, J. Narayan, J. Appl. Phys. 2007, 102, 023501.
[24] H. Saarenpää, T. Niemi, A. Tukiainen, H. Lemmetyinen, N. Tkachenko, Sol. Energy Mater. Sol. Cells 2010, 94, 1379.
[25] S. De, P. J. King, P. E. Lyons, U. Khan, J. N. Coleman, ACS Nano 2010, 4, 7064.
[26] J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, P. Peumans, ACS Nano 2010, 4, 43.
[27] S. D. Yambem, A. Haldar, K.-S. Liao, E. P. Dillon, A. R. Barron, S. A. Curran, Sol. Energy Mater. Sol. Cells 2011, 95, 2424.
[28] N. Formica, D. Sundar Ghosh, T. L. Chen, C. Eickhoff, I. Bruder, V. Pruneri, Sol. Energy Mater. Sol. Cells 2012, 107, 63.
[29] D. Y. Zhang, H. Yabe, E. Akita, P. P. Wang, R. Murakami, X. P. Song, J. Appl. Phys. 2011, 109, 104318.
[30] M. Chakaroun, B. Lucas, B. Ratier, C. Defranoux, J. P. Piel, M. Aldissi, Thin Solid Films 2009, 518, 1250.
[31] H.-K. Park, J.-W. Kang, S.-I. Na, D.-Y. Kim, H.-K. Kim, Sol. Energy Mater. Sol. Cells 2009, 93, 1994.
[32] C.-K. Cho, W.-J. Hwang, K. Eun, S.-H. Choa, S.-I. Na, H.-K. Kim, Sol. Energy Mater. Sol. Cells 2011, 95, 3269.
[33] Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller-Meskamp, K. Leo, Adv. Funct. Mater. 2011, 21, 1076.
[34] W. Zhang, B. Zhao, Z. He, X. Zhao, H. Wang, S. Yang, H. Wu, Y. Cao, Energy Environ. Sci. 2013, 6, 1956.
[35] H. Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, Y. H. Lee, J. Am. Chem. Soc. 2007, 129, 7758.
[36] D.-Y. Cho, K. Eun, S.-H. Choa, H.-K. Kim, Carbon 2014, 66, 530.
[37] S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, S. Iijima, Nat. Nanotechnol. 2010, 5, 574.
[38] A. Kim, Y. Won, K. Woo, S. Jeong, J. Moon, Adv. Funct. Mater. 2014, 24, 2462.
[39] D. S. Leem, A. Edwards, M. Faist, J. Nelson, D. D. Bradley, J. C. de Mello, Adv. Mater. 2011, 23, 4371.
[40] A. Kim, Y. Won, K. Woo, C. H. Kim, J. Moon, ACS Nano 2013, 7, 1081.
[41] C.-H. Chung, T.-B. Song, B. Bob, R. Zhu, Y. Yang, Nano Res. 2012, 5, 805.
[42] M. Dressel, G. Gruner, Electrodynamics of Solids Optical Properties of Electrons in Matter, Cambridge University Press, 2002.
[43] D. Y. Choi, H. W. Kang, H. J. Sung, S. S. Kim, Nanoscale 2013, 5, 977.
[44] L. Yang, T. Zhang, H. Zhou, S. C. Price, B. J. Wiley, W. You, ACS Appl. Mater. Interfaces 2011, 3, 4075.
[45] A. B. V. Kiran Kumar, C. wan Bae, L. Piao, S.-H. Kim, Mater. Res. Bull. 2013, 48, 2944.
[46] J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, J. Phys. Chem. C 2013, 117, 16632.
[47] Z. Yu, Q. Zhang, L. Li, Q. Chen, X. Niu, J. Liu, Q. Pei, Adv. Mater. 2011, 23, 664.
[48] C. Sachse, L. Müller-Meskamp, L. Bormann, Y. H. Kim, F. Lehnert, A. Philipp, B. Beyer, K. Leo, Org. Electron. 2013, 14, 143.
[49] T. Tokuno, M. Nogi, M. Karakawa, J. Jiu, T. T. Nge, Y. Aso, K. Suganuma, Nano Res. 2011, 4, 1215.
[50] J. S. Oh, J. S. Oh, J. H. Shin, G. Y. Yeom, K. N. Kim, J. Nanosci. Nanotechnol. 2015, 15, 8647.
[51] E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. Greyson Christoforo, Y. Cui, M. D. McGehee, M. L. Brongersma, Nat. Mater. 2012, 11, 241.
[52] J. Lee, J. Y. Woo, J. T. Kim, B. Y. Lee, C. S. Han, ACS Appl. Mater. Interfaces 2014, 6, 10974.
[53] J. H. Park, G. T. Hwang, S. Kim, J. Seo, H. J. Park, K. Yu, T. S. Kim, K. J. Lee, Adv. Mater. 2017, 29.
[54] H. Tohmyoh, T. Imaizumi, H. Hayashi, M. Saka, Scripta Mater. 2007, 57, 953.
[55] H. Tohmyoh, S. Fukui, J. Nanopart. Res. 2012, 14, 1116.
[56] T.-B. Song, Y. Chen, C.-H. Chung, Y. M. Yang, B. Bob, H.-S. Duan, G. Li, K.-N. Tu, Y. Huang, Y. Yang, ACS Nano 2014, 8, 2804.
[57] A. Vafaei, A. Hu, I. A. Goldthorpe, Nano Micro Lett. 2014, 6, 293.
[58] Z. Yu, L. Li, Q. Zhang, W. Hu, Q. Pei, Adv. Mater. 2011, 23, 4453.
[59] W. Gaynor, G. F. Burkhard, M. D. McGehee, P. Peumans, Adv. Mater. 2011, 23, 2905.
[60] L. Li, Z. Yu, C. H. Chang, W. Hu, X. Niu, Q. Chen, Q. Pei, Phys. Chem. Chem. Phys. 2012, 14, 14249.
[61] Y.-J. Noh, S.-S. Kim, T.-W. Kim, S.-I. Na, Sol. Energy Mater. Sol. Cells 2014, 120, 226.
[62] S. Coskun, E. Selen Ates, H. E. Unalan, Nanotechnology 2013, 24, 125202.
[63] R. V. Salvatierra, C. E. Cava, L. S. Roman, A. J. G. Zarbin, Adv. Funct. Mater. 2013, 23, 1490.
[64] L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, Y. Cui, ACS Nano 2010, 4, 2955.
[65] J. Lee, P. Lee, H. Lee, D. Lee, S. S. Lee, S. H. Ko, Nanoscale 2012, 4, 6408.
[66] X. Y. Zeng, Q. K. Zhang, R. M. Yu, C. Z. Lu, Adv. Mater. 2010, 22, 4484.
[67] C.-Y. Lin, D.-H. Kuo, W.-C. Chen, M.-W. Ma, G.-S. Liou, Org. Electron. 2012, 13, 2469.
[68] Y. Jin, D. Deng, Y. Cheng, L. Kong, F. Xiao, Nanoscale 2014, 6, 4812.
[69] C. Guillén, J. Herrero, Thin Solid Films 2011, 520, 1.
[70] E. Bauer, Z. Kristallogr. 1958, 110, 395.
[71] J. Yun, W. Wang, T. S. Bae, Y. H. Park, Y. C. Kang, D. H. Kim, S. Lee, G. H. Lee, M. Song, J. W. Kang, ACS Appl. Mater. Interfaces 2013, 5, 9933.
[72] D.-Y. Kim, Y. C. Han, H. C. Kim, E. G. Jeong, K. C. Choi, Adv. Funct. Mater. 2015, 25, 7145.
[73] J. Meiss, M. K. Riede, K. Leo, J. Appl. Phys. 2009, 105, 063108.
[74] J. Meiss, M. K. Riede, K. Leo, Appl. Phys. Lett. 2009, 94, 013303.
[75] S. Schubert, J. Meiss, L. Müller-Meskamp, K. Leo, Adv. Energy Mater. 2013, 3, 438.
[76] J. H. Im, K.-T. Kang, S. H. Lee, J. Y. Hwang, H. Kang, K. H. Cho, Org. Electron. 2016, 33, 116.
[77] L. H. Xu, Q. D. Ou, Y. Q. Li, Y. B. Zhang, X. D. Zhao, H. Y. Xiang, J. D. Chen, L. Zhou, S. T. Lee, J. X. Tang, ACS Nano 2016, 10, 1625.
[78] T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, M. C. Gather, Adv. Opt. Mater. 2013, 1, 921.
[79] T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, M. C. Gather, Adv. Opt. Mater. 2013, 1, 707.
[80] Y. M. Yang, Q. Chen, Y. T. Hsieh, T. B. Song, N. D. Marco, H. Zhou, Y. Yang, ACS Nano 2015, 9, 7714.
[81] R. A. Hatton, M. R. Willis, M. A. Chesters, D. Briggs, J. Mater. Chem. 2003, 13, 722.
[82] H. M. Stec, R. A. Hatton, ACS Appl. Mater. Interfaces 2012, 4, 6013.
[83] H. M. Stec, R. J. Williams, T. S. Jones, R. A. Hatton, Adv. Funct. Mater. 2011, 21, 1709.
[84] J. Zou, C. Z. Li, C. Y. Chang, H. L. Yip, A. K. Jen, Adv. Mater. 2014, 26, 3618.
[85] L. Ke, S. C. Lai, H. Liu, C. K. Peh, B. Wang, J. H. Teng, ACS Appl. Mater. Interfaces 2012, 4, 1247.
[86] H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Nat. Commun. 2015, 6, 6503.
[87] C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. Wu, L. J. Guo, Adv. Mater. 2014, 26, 5696.
[88] D. Zhao, C. Zhang, H. Kim, L. J. Guo, Adv. Energy Mater. 2015, 5, 1500768.
[89] H. A. Macleod, Thin-film optical filters, CRC press, 2001.
[90] J. B. Birks, J. H. Appleyard, R. Pope, Photochem. Photobiol. 1963, 2, 493.
[91] C. Adachi, S. Tokito, T. Tsutsui, S. Saito, Jpn. J. Appl. Phys. 1988, 27, L269.
[92] C. W. Tang, S. A. VanSlyke, C. H. Chen, J. Appl. Phys. 1989, 65, 3610.
[93] S. R. Forrest, M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, Nature 1998, 395, 151.
[94] W. Gaynor, S. Hofmann, M. G. Christoforo, C. Sachse, S. Mehra, A. Salleo, M. D. McGehee, M. C. Gather, B. Lussem, L. Muller-Meskamp, P. Peumans, K. Leo, Adv. Mater. 2013, 25, 4006.
[95] L. Li, Z. Yu, W. Hu, C. H. Chang, Q. Chen, Q. Pei, Adv. Mater. 2011, 23, 5563.
[96] J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Nat. Photon. 2013, 7, 817.
[97] H. Lee, D. Lee, Y. Ahn, E. W. Lee, L. S. Park, Y. Lee, Nanoscale 2014, 6, 8565.
[98] L. Li, J. Liang, S. Y. Chou, X. Zhu, X. Niu, ZhibinYu, Q. Pei, Sci. Rep. 2014, 4, 4307.
[99] J. H. Yim, S. Y. Joe, C. Pang, K. M. Lee, H. Jeong, J. Y. Park, Y. H. Ahn, J. C. de Mello, S. Lee, ACS Nano 2014, 8, 2857.
[100] K. Zilberberg, F. Gasse, R. Pagui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P. Görrn, T. Riedl, Adv. Funct. Mater. 2014, 24, 1671.
[101] J. Jin, J. Lee, S. Jeong, S. Yang, J.-H. Ko, H.-G. Im, S.-W. Baek, J.-Y. Lee, B.-S. Bae, Energy Environ. Sci. 2013, 6, 1811.
[102] R. G. Gordon, MRS Bull. 2000, 52.
[103] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science 2004, 305, 1273.
[104] S. W. Oh, T. H. Yoon, Appl. Opt. 2014, 53, 7321.
[105] Y. Leterrier, L. Médico, F. Demarco, J. A. E. Månson, U. Betz, M. F. Escolà, M. Kharrazi Olsson, F. Atamny, Thin Solid Films 2004, 460, 156.
[106] I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, Adv. Mater. 2012, 24, 2844.
[107] S. Lee, J. S. Yeo, Y. Ji, C. Cho, D. Y. Kim, S. I. Na, B. H. Lee, T. Lee, Nanotechnology 2012, 23, 344013.
[108] L. Hu, D. S. Hecht, G. Gruner, Chem. Rev. 2010, 110, 5790.
[109] M. W. Rowell, M. A. Topinka, M. D. McGehee, H.-J. r. Prall, G. Dennler, N. S. Sariciftci, L. Hu, G. Gruner, Appl. Phys. Lett. 2006, 88, 233506.
[110] D. L. Carroll, R. Czerw, S. Webster, Synth. Met. 2005, 155, 694.
[111] D. Angmo, S. A. Gevorgyan, T. T. Larsen-Olsen, R. R. Søndergaard, M. Hösel, M. Jørgensen, R. Gupta, G. U. Kulkarni, F. C. Krebs, Org. Electron. 2013, 14, 984.
[112] D. Angmo, F. C. Krebs, J. Appl. Polym. Sci. 2013, 129, 1.
[113] S.-I. Na, J.-S. Lee, Y.-J. Noh, T.-W. Kim, S.-S. Kim, H.-I. Joh, S. Lee, Sol. Energy Mater. Sol. Cells 2013, 115, 1.
[114] K. Tvingstedt, O. Inganäs, Adv. Mater. 2007, 19, 2893.
[115] J. S. Yeo, J. M. Yun, D. Y. Kim, S. Park, S. S. Kim, M. H. Yoon, T. W. Kim, S. I. Na, ACS Appl. Mater. Interfaces 2012, 4, 2551.
[116] J. S. Yu, I. Kim, J. S. Kim, J. Jo, T. T. Larsen-Olsen, R. R. Sondergaard, M. Hosel, D. Angmo, M. Jorgensen, F. C. Krebs, Nanoscale 2012, 4, 6032.
[117] Y. Sun, Nanoscale 2010, 2, 1626.
[118] J.-W. Lim, D.-Y. Cho, K. Jihoon, S.-I. Na, H.-K. Kim, Sol. Energy Mater. Sol. Cells 2012, 107, 348.
[119] S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, J. N. Coleman, ACS Nano 2009, 3, 1767.
[120] D. P. Langley, G. Giusti, M. Lagrange, R. Collins, C. Jiménez, Y. Bréchet, D. Bellet, Sol. Energy Mater. Sol. Cells 2014, 125, 318.
[121] J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, S. S. Lee, T.-S. Kim, D. Lee, S. H. Ko, Adv. Funct. Mater. 2013, 23, 4171.
[122] R. Zhu, C. H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T. B. Song, C. C. Chen, P. S. Weiss, G. Li, Y. Yang, ACS Nano 2011, 5, 9877.
[123] F. S. F. Morgenstern, D. Kabra, S. Massip, T. J. K. Brenner, P. E. Lyons, J. N. Coleman, R. H. Friend, Appl. Phys. Lett. 2011, 99, 183307.
[124] D. S. Ghosh, T. L. Chen, V. Mkhitaryan, N. Formica, V. Pruneri, Appl. Phys. Lett. 2013, 102, 221111.
[125] J. Zhao, H. Sun, S. Dai, Y. Wang, J. Zhu, Nano Lett. 2011, 11, 4647.
[126] H. H. Khaligh, I. A. Goldthorpe, Nanoscale Res. Lett. 2013, 8, 235.
[127] Y. Li, K. Tsuchiya, H. Tohmyoh, M. Saka, Nanoscale Res. Lett. 2013, 8, 370.
[128] Y.-S. Kim, M.-H. Chang, E.-J. Lee, D.-W. Ihm, J.-Y. Kim, Synth. Met. 2014, 195, 69.
[129] J.-H. Chang, H.-F. Wang, W.-C. Lin, K.-M. Chiang, K.-C. Chen, W.-C. Huang, Z.-Y. Huang, H.-F. Meng, R.-M. Ho, H.-W. Lin, J. Mater. Chem. A 2014, 2, 13398.
[130] J.-H. Chang, Y.-H. Chen, H.-W. Lin, Y.-T. Lin, H.-F. Meng, E.-C. Chen, Org. Electron. 2012, 13, 705.
[131] J. Li, J. Liang, X. Jian, W. Hu, J. Li, Q. Pei, Macromol. Mater. Eng. 2014, 299, 1403.
[132] X. Zhang, X. Yan, J. Chen, J. Zhao, Carbon 2014, 69, 437.
[133] S. Ji, W. He, K. Wang, Y. Ran, C. Ye, Small 2014, 10, 4951.
[134] D. Kim, L. Zhu, D.-J. Jeong, K. Chun, Y.-Y. Bang, S.-R. Kim, J.-H. Kim, S.-K. Oh, Carbon 2013, 63, 530.
[135] X. Liu, Thin Solid Films 2003, 441, 200.
[136] M. Zadsar, H. R. Fallah, M. H. Mahmoodzadeh, S. V. Tabatabaei, J. Lumin. 2012, 132, 992.
[137] H. M. Liddell, H. Jerrard, Computer-aided techniques for the design of multilayer filters, IOP Publishing Ltd., 1981.
[138] J. Ham, J.-L. Lee, Adv. Energy Mater. 2014, 4, 1400539.
[139] C. Zhang, N. Kinsey, L. Chen, C. Ji, M. Xu, M. Ferrera, X. Pan, V. M. Shalaev, A. Boltasseva, L. J. Guo, Adv. Mater. 2017.
[140] Y. Kato, L. K. Ono, M. V. Lee, S. Wang, S. R. Raga, Y. Qi, Adv. Mater. Interfaces 2015, 2, 1500195.
[141] C.-Y. Chang, K.-T. Lee, W.-K. Huang, H.-Y. Siao, Y.-C. Chang, Chem. Mater. 2015, 27, 5122.
[142] Ja, nacute, B. czuk, T. Bialopiotrowicz, A. Zdziennicka, J. Colloid Interface Sci. 1999, 211, 96.
[143] H.-W. Lin, C.-L. Lin, H.-H. Chang, Y.-T. Lin, C.-C. Wu, Y.-M. Chen, R.-T. Chen, Y.-Y. Chien, K.-T. Wong, J. Appl. Phys. 2004, 95, 881.
[144] H. Becker, S. E. Burns, R. H. Friend, Phys. Rev. B 1997, 56, 1893.
[145] D. Yokoyama, J. Mater. Chem. 2011, 21, 19187.
[146] K.-H. Kim, J.-Y. Ma, C.-K. Moon, J.-H. Lee, J. Y. Baek, Y.-H. Kim, J.-J. Kim, Adv. Opt. Mater. 2015, 3, 1191.
[147] K. H. Kim, C. K. Moon, J. H. Lee, S. Y. Kim, J. J. Kim, Adv. Mater. 2014, 26, 3844.
[148] C.-K. Moon, K.-H. Kim, J. W. Lee, J.-J. Kim, Chem. Mater. 2015, 27, 2767.
[149] K. H. Kim, S. Lee, C. K. Moon, S. Y. Kim, Y. S. Park, J. H. Lee, J. Woo Lee, J. Huh, Y. You, J. J. Kim, Nat. Commun. 2014, 5, 4769.
[150] A. Graf, P. Liehm, C. Murawski, S. Hofmann, K. Leo, M. C. Gather, J. Mater. Chem. C 2014, 2, 10298.
[151] M. J. Jurow, C. Mayr, T. D. Schmidt, T. Lampe, P. I. Djurovich, W. Brutting, M. E. Thompson, Nat. Mater. 2016, 15, 85.
[152] J. r. Frischeisen, D. Yokoyama, C. Adachi, W. Brütting, Appl. Phys. Lett. 2010, 96, 073302.
[153] S.-Y. Kim, W.-I. Jeong, C. Mayr, Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-K. Moon, W. Brütting, J.-J. Kim, Adv. Funct. Mater. 2013, 23, 3896.
[154] J. Frischeisen, D. Yokoyama, C. Adachi, W. Brütting, Appl. Phys. Lett. 2010, 96, 073302.
[155] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, J. Appl. Phys. 2001, 90, 5048.
[156] S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, K. Leo, Nature 2009, 459, 234.
[157] C.-Y. Lu, M. Jiao, W.-K. Lee, C.-Y. Chen, W.-L. Tsai, C.-Y. Lin, C.-C. Wu, Adv. Funct. Mater. 2016, 26, 3250.
[158] S. Möller, S. R. Forrest, J. Appl. Phys. 2002, 91, 3324.
[159] Y. Sun, S. R. Forrest, J. Appl. Phys. 2006, 100, 073106.
[160] Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, Y. H. Lee, Adv. Mater. 2003, 15, 1214.
[161] T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig, U. Lemme, Opt. Express 2012, 20 Suppl 6, A932.
[162] Y. Sun, S. R. Forrest, Nat. Photon. 2008, 2, 483.
[163] Y. Qu, M. Slootsky, S. R. Forrest, Nat. Photon. 2015, 9, 758.
[164] T. Nakamura, N. Tsutsumi, N. Juni, H. Fujii, J. Appl. Phys. 2005, 97, 054505.
[165] W.-C. Lin, C.-W. Chen, H.-W. Lin, Solid State Electron. 2015, 105, 58.
[166] Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu, Z. H. Lu, Nat. Photon. 2011, 5, 753.
[167] A. Köhnen, M. C. Gather, N. Riegel, P. Zacharias, K. Meerholz, Appl. Phys. Lett. 2007, 91, 113501.
[168] H. Shin, J. H. Lee, C. K. Moon, J. S. Huh, B. Sim, J. J. Kim, Adv. Mater. 2016, 28, 4920.
[169] J. Lee, T. H. Han, M. H. Park, D. Y. Jung, J. Seo, H. K. Seo, H. Cho, E. Kim, J. Chung, S. Y. Choi, T. S. Kim, T. W. Lee, S. Yoo, Nat. Commun. 2016, 7, 11791.
[170] W. H. Koo, S. M. Jeong, F. Araoka, K. Ishikawa, S. Nishimura, T. Toyooka, H. Takezoe, Nat. Photon. 2010.
[171] C.-L. Lin, T.-Y. Cho, C.-H. Chang, C.-C. Wu, Appl. Phys. Lett. 2006, 88, 081114.
[172] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, J. M. Phillips, J. Appl. Phys. 1996, 80, 6954.
[173] M. Thomschke, R. Nitsche, M. Furno, K. Leo, Appl. Phys. Lett. 2009, 94, 083303.
[174] C.-C. Wu, C.-L. Lin, P.-Y. Hsieh, H.-H. Chiang, Appl. Phys. Lett. 2004, 84, 3966.