簡易檢索 / 詳目顯示

研究生: 顏嘉鋒
Yen, Chia-Fung
論文名稱: 用於直接取樣單晶片雷達系統之連續漸進式類比數位轉換器設計
A SAR ADC Design for Director Sampling CMOS Radar System
指導教授: 朱大舜
Chu, Ta-Shun
口試委員: 吳仁銘
王毓駒
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 78
中文關鍵詞: 連續漸進式類比數位轉換器
外文關鍵詞: SAR ADC
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究所別:電機工程學系
    論文名稱:用於直接取樣單晶片雷達系統之連續漸進式類比數位轉換器設計
    指導教授:朱大舜 博士
    研 究 生:9961546, 顏嘉鋒

    隨著科技的進步,製程日漸更新,在同樣的面積下能夠設計的電路也越來越多,效能也越來越好。也隨著這樣的科技進步,許多人願意嘗試進行將大系統整合在一塊晶片的設計方式,而若是要將系統處理過的訊號放進電腦進行分析處理,則必須要使用類比數位轉換器。
    本論文介紹三種不同的連續漸進式類比數位轉換器,每一個各有不同的用途,並比較其優缺點。
    三種不同的連續漸進式類比數位轉換器分別為同步單端式,非同步單端式,非同步雙端式,進行介紹。其中個分別以聯電0.18微米製程,台積65奈米製程,台積65奈米製程下線驗證晶片,並分析其用於不同地方之功能以及效益。
    三種連續漸進式類比數位轉換器分別經過量測以及模擬,第一種為8位元單端同步連續漸進式類比數位轉換器,經過量測後的結果其SNDR為48.43,有效位元數為7.75,DNL及INL分別為0.35~-0.57以及0.28~-0.57。第二種為10位元單端非同步連續漸進式類比數位轉換器,經過模擬結果SNDR為56.6,其有效位元數為9.12, DNL及INL分別為0.51~-0.5以及0.05~-0.5。第三種為10位元雙端非同步連續漸進式類比數位轉換器,經過模擬結果SNDR為61.30,其有效位元數為9.79,DNL及INL分別為0.002~-0.499以及0.52~-0.248。
    三種連續漸進式類比數位轉換器分別有不同的效能,分別應用在不同的雷達系統之中,可因應不同的效能需求而讓使用者可以做選擇。


    As technology advances, the process gradually updates, more and more circuits can be design in the same area,and the performance is getting better and better. With this scientific and technological progress, many people are willing to try to carry out large-scale system integrated in one chip design, but if they want to put the signal into a computer for analysis and processing, they must use the analog to digital converter.
    This paper introduces three different continuous approximation analog-digital converters, each have different purposes, and their advantages and disadvantages.
    Three different type continuous approximation analog to digital converter are synchronous single input, non-synchronous single input, non-synchronous differential input, are described. Which a UMC 0.18mm process, TSMC 65nm, the TSMC 65nm process tape out, and analyze its functionality and efficiency for different circuitry places.

    目錄 中文摘要……………………………………………………………………………………………………………1 英文摘要……………………………………………………………………………………………………………2 圖目錄 圖1.1 雷達系統架構………………………………………………………………………………………………………………………..10 圖1.2訊號取樣示意圖…………………………………………………………………………………………………………………….10 圖1.3 Correlate Double Sampling 示意圖………………………………………………………………………………………..11 圖2.1 DNL示意圖…………………………………………………………………………………………………………………………….14 圖2.2增益偏差示意圖…………………………………………………………………………………………………………………….15 圖2.3直流偏差示意圖…………………………………………………………………………………………………………………….16 圖2.4單端連續漸進式類比數位轉換器行為模式圖………………………………………………………………………18 圖2.5雙端連續漸進式類比數位轉換器行為模式圖……………………………………………………………………….19 圖2.6雙端連續漸進式數位類比轉換器示意圖……………………………………………………………………………….19 圖2.7非同步架構示意圖………………………………………………………………………………………………………………….20 圖3.1追蹤保持電路及行為示意圖………………………………………………………………………………………………….21 圖3.2取樣保持電路及其行為模式示意圖………………………………………………………………………………………22 圖3.3靴帶電路(Bootstrap)架構圖……………………………………………………………………………………………………23 圖3.4取樣保持電路等效模型………………………………………………………………………………………………………….23 圖3.5栓鎖器(Latch)示意圖……………………………………………………………………………………………………………….24 圖3.6比較器增益示意圖………………………………………………………………………………………………………………….25 圖3.7栓鎖器速度表示圖………………………………………………………………………………………………………………….25 圖3.8軌對軌比較器架構………………………………………………………………………………………………………………….26 圖3.9低功率比較器架構………………………………………………………………………………………………………………….27 圖3.10連續漸進式邏輯電路架構…………………………………………………………………………………………………….27 圖3.11由邏輯電路組成的D-Flip Flop………………………………………………………………………………………………28 圖3.12具有Reset及Set功能之D-Flip Flop…………………………………………………………………………………….28 圖3.13二進制電容陣列式數位類比轉換器…………………………………………………………………………………….29 圖3.14電容橋接式數位類比轉換器………………………………………………………………………………………………..30 圖3.15 C-2C電容陣列式數位類比轉換器………………………………………………………………………………………..30 圖3.16時序產生器架構圖………………………………………………………………………………………………………………..31 圖4.1單端同步連續漸進式類比數位轉換器示意圖……………………………………………………………………….32 圖4.2靴帶電路(Bootstrape)……………………………………………………………………………………………………………..32 圖4.3軌對軌比較器架構………………………………………………………………………………………………………………….33 圖4.4連續漸進式邏輯電路架構………………………………………………………………………………………………………34 圖4.5數位類比轉換器……………………………………………………………………………………………………………………..34 圖4.6數位類比轉換器的排列方式………………………………………………………………………………………………….35 圖4.7時序產生器架構……………………………………………………………………………………………………………………..36 圖4.8 DNL及INL量測結果……………………………………………………………………………………………………………….37 圖4.9 SNR及ENOB量測結果…………………………………………………………………………………………………………..38 圖4.10單端同步連續漸進式類比數位轉換器Layout圖…………………………………………………………………40 圖4.11單端同步連續漸進式類比數位轉換器晶片圖……………………………………………………………………..41 圖4.12 PCB設計圖……………………………………………………………………………………………………………………………42 圖5.1單端非同步連續漸進式類比數位轉換器架構圖……………………………………………………………………43 圖5.2取樣保持電路架構圖……………………………………………………………………………………………………………..43 圖5.3比較器架構………………………….………………………………………………………………………………………………….44 圖5.4非同步連續漸進式邏輯電路………………………………………………………………………………………………….45 圖5.5二進制電容陣列數位類比轉換器…………………………………………………………………………………………..45 圖5.6單端非同步連續漸進式類比數位轉換器行為模式圖……………………………………………………………46 圖5.7單端SARADC DNLINL模擬結果………………………………………………………………………………………………47 圖5.8單端SARADC SNDR模擬結果…………………………………………………………………………………………………47 圖5.9 Layout圖………………………………………………………………………………………………………………………………….48 圖6.1雙端非同步連續漸進式類比數位轉換器架構……………………………………………………………………….49 圖6.2雙端連續漸進式類比數位轉換器行為模式A………………………………………………………………………..50 圖6.3雙端連續漸進式類比數位轉換器行為模式B………………………………………………………………………..50 圖6.4取樣保持電路及靴帶電路架構………………………………………………………………………………………………51 圖6.5數位類比轉換器控制單元………………………………………………………………………………………………………51 圖6.6雙端連續漸進式類比數位轉換器使用之比較器架構……………………………………………………………52 圖6.7非同步(Asynchronous)時序控制電路架構……………………………………………………………………………..53 圖6.8非同步時序示意圖………………………………………………………………………………………………………………….53 圖6.9 DNL及INL模擬結果……………………………………………………………………………………………………………….54 圖6.10 SNDR模擬結果……………………………………………………………………………………………………………………..55 圖6.11單端及雙端非同步連續漸進式類比數位轉換器Layout圖…………………………………………………56 圖7.1 Pseudo Differential示意圖………………………………………………………………………………………………………57 圖7.2類比數位轉換器資料輸出模式………………………………………………………………………………………………58 圖7.3鎖相迴路輸出級表示………………………………………………………………………………………………………………59 圖7.4類比數位轉換器輸出級示意圖………………………………………………………………………………………………59 圖8.1雷達系統發送端架構………………………………………………………………………………………………………………61 圖8.2連續正弦波訊號示意圖………………………………………………………………………………………………………….62 圖8.3脈衝訊號示意圖……………………………………………………………………………………………………………………..62 圖8.4脈衝時序示意圖……………………………………………………………………………………………………………………..63 圖8.5脈衝產生器單元架構………………………………………………………………………………………………………………63 圖8.6脈衝產生器架構……………………………………………………………………………………………………………………..64 圖8.7雷達系統發送端Layout圖……………………………………………………………………………………………………..65 圖8.8雷達系統發送端晶片照………………………………………………………………………………………………………….65 圖8.9時序控制電路示意圖………………………………………………………………………………………………………………66 圖8.10時序產生示意圖……………………………………………………………………………………………………………………66 圖8.11雙端輸入單端輸出放大器…………………………………………………………………………………………………….67 圖8.12負載級上半部……………………………………………………………………………………………………………………….68 圖8.13負載級下半部……………………………………………………………………………………………………………………….68 圖8.14電流對電壓曲線圖………………………………………………………………………………………………………………..69 圖8.15輸出級設計……………………………………………………………………………………………………………………………69 圖8.16常數化電路(Constant Gm)…………………………………………………………………………………………………….70 圖8.17 Bias電壓架構………………………………………………………………………………………………………………………..71 圖8.18雙端輸出共模放大器(Common Mode Feedback)…………………………………………………………………72 圖8.19 CMF放大器…………………………………………………………………………………………………………………………..72 圖8.20 Voltage Gain Amplifier架構圖……………………………………………………………………………………………….73 圖8.21積分器架構圖(Integrator)……………………………………………………………………………………………………..74 圖8.22資料平行進入垂直輸出型位移暫存器(PISO Shift Register)………………………………………………….75 圖8.23位移暫存器架構圖………………………………………………………………………………………………………………..75 圖8.24位移暫存器子電路架構………………………………………………………………………………………………………..76 表目錄 表4.1 單端同步連續漸進式類比數位轉換器規格表……………………………………………………………………..39 表5.1 單端非同步連續漸進類比數位轉換器規格表……………………………………………………………………..48 表6.1 雙端非同步連續漸進類比數位轉換器規格表……………………………………………………………………..55 表7.1三種類比數位轉換器比較表………………………………………………………………………………………………….60 第一章 簡介…………………………………………………………………………………………………………………………………..10 1.1雷達系統架構介………………………………………………………………………………………………………10 1.2類比數位轉換器角色簡介………………………………………………………………………………………….12 第二章 背景介紹及相關參數介紹….. ………………………………………………………………………………………....13 2.1類比數位轉換器架構介紹………………………………………………………………………………………….13 2.2類比數位轉換器相關參數介紹………………………………………………………………………………….13 2.2.1最小意義單元(Least Signification Bit)…………………………………………………………………..13 2.2.2微分非線性(DNL)………………………………………………………………………………………………….14 2.2.3積分非線性(INL)…………………………………………………………………………………………………..15 2.2.4增益偏差(Gain Offset)………………………………………………………………………………………….15 2.2.5直流偏差(DC Offset)…………………………………………………………………………………………….16 2.2.6信號與雜訊失真比(Signal to Noise and Distortion Rate)……………………………………..16 2.2.7有效位元數(Effect Number of Bit )……………………………………………………………………….17 2.3連續漸進式類比數位轉換器介紹………………………………………………………………………………18 第三章 子電路設計………………………………………………………………………………………………………………………….21 3.1子電路設計…………………………………………………………………………………………………………………….21 3.1.1取樣電路設計(Sample and Hold Circuitry)…………………………………………………………….21 3.1.2比較器電路設計(Comparator)………………………………………………………………………………24 3.1.3連續漸進式邏輯電路設計(SAR Logic Circuitry)…………………………………………………….27 3.1.4二進制數位類比轉換器(Binary Weighted DAC)……………………………………………………29 3.1.5時序產生器(Timing Circuitry)……………………………………………………………………………….31 第四章 單端同步連續漸進式類比數位轉換器……………………………………………………………………………..32 4.1單端同步連續漸進式類比數位轉換器架構設計………………………………………………………..32 4.2量測結果………………………………………………………………………………………………………………………36 4.2.1 DNL及INL量測結果………………………………………………………………………………………..36 4.2.2 SNR及ENOB量測結果……………………………………………………………………………………37 4.3 規格表………………………………………………………………………………………………………………………..39 4.4 layout、PCB及晶片俯視圖……………………………………………………………………………………..40 第五章 單端非同步連續漸進式類比數位轉換器………………………………………………………………………..43 5.1單端非同步連續漸進式類比數位轉換器架構設計…………………………………………………..43 5.2量測結果…………………………………………………………………………………………………………………….46 5.2.1 DNL及INL模擬結果…………………………………………………………………………………………….46 5.2.2 SNR及ENOB模擬結果………………………………………………………………………………………..47 5.3規格表……………………………………………………………………………………………………………………………48 5.4 layout俯視圖…………………………………………………………………………………………………………………48 第六章 雙端非同步連續漸進式類比數位轉換器…………………………………………………………………………..49 6.1雙端非同步連續漸進式類比數位轉換器架構設計……………………………………………………..49 6.2模擬結果……………………………………………………………………………………………………………………….54 6.2.1 DNL及INL模擬結果…………………………………………………………………………………………..54 6.2.2 SNR及ENOB模擬結果……………………………………………………………………………………….55 6.3規格表…………………………………………………………………………………………………………………………..55 6.4 layout俯視圖………………………………………………………………………………………………………………..56 第七章 總結…………………………………………………………………………………………………………………………………….57 第八章 附件…………………………………………………………………………………………………………………………………….61 8.1 Current Steering DAC in Pulse Generator……………………………………………………………………….61 8.2 Timing Circuitry in Radar System……………………………………………………………………………………65 8.3 Op Amplifier………………………………………………………………………………………………………………….67 8.4 Voltage Gain Amplifier…………………………………………………………………………………………………..73 8.5 Integrator………………………………………………………………………………………………………………………74 8.6 Shift Register………………………………………………………………………………………………………………….75 參考文獻………………………………………………………………………………………………………………………………………….77

    參考文獻

    [1] T. Ogawa, et al., “SAR ADC Algorithm with Redundancy,” IEEE Asia
    Pacific conf. of Cct. and Syst., pp. 268-271, Dec. 2008.
    [2] Jinwoo Kim, Shin-Il Lim, Kwang-Sub Yoon, Sangmin Lee,“Design of a 12-b Asynchronous SAR ADC,” SoC Design Conference (ISOCC), 2011 International
    [3] Yafei Y, Liyuan Liu, Fule Li, Dongmei Li, Zhihua Wang, "An 8-bit 1MHz Successive Approximation Register (SAR) A/D with 7.98 ENOB," Anti-Counterfeiting, Security and Identification (ASID), 2011 IEEE International Conference on
    [4] Behzad Razavi, "Design of Analog CMOS Integrated"
    [6] S. M. Chin, C. C. Hsieh, C. F. Chiu, and H. H. Tsai, "A new rail-to-rail comparator with adaptive power control for low power SAR ADCs in biomedical application," IEEE Int. Symp. on Circuits and Systems, 2010, pp. 1575-1578.
    [7] PEI Xiaomin, WANG Peiyuan, “Design and modeling of a 12-bit SAR ADC IP with Non-lumped Capacitor Array, ” Future Computer and Communication (ICFCC), 2010 2nd International Conference on
    [8] Lungui Zhong, Haigang Yang and Chong Zhang, “Design of an Embedded CMOS CR SAR ADC for Low Power Applications in Bio-Sensor SOC” ASICON 2007, Oct. 2007, pp. 668-671.
    [9] Ryota Sekimoto, Akira Shikata, and Hiroki Ishikuro,” A Power Scalable SAR-ADC in 0.18μm-CMOS with 0.5V Nano-Watt Operation, ” Access Spaces (ISAS), 2011 1st International Symposium on
    [10] I. Kianpour, M. Baghaei-Nejad, and Li-Rong Zheng, ” A Subthreshold 8-bit 78.4nw 17.8 kS/s 0.18um SAR ADC for RFID Sensing applications, ” Electrical Engineering (ICEE), 2011 19th Iranian Conference on
    [11] Sun-Il Chang, Khaled Al-Ashmouny, and Euisik Yoon, ” A 0.5V 20fJ/Conversion-Step Rail-to-rail SAR ADC with Programmable Time-Delayed Control Units for Low-Power Biomedical Application, ” ESSCIRC (ESSCIRC), 2011
    [12] Ken Martin , "Digital Integrated Circuit Design ".
    [13] Hung-Wei Chen, Yu-Hsun Liu, Yu-Hsiang Linʿ and Hsin-Shu Chen, ” A 3mW 12b 10MS/s Sub-Range SAR ADC, ” Solid-State Circuits Conference, 2009. A-SSCC 2009. IEEE Asian
    [14] C.C. Liu, et al., “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740 Apr. 2010
    [15] Xiaolei Zhu, Yanfei Chen, Sanroku Tsukamoto,and Tadahiro Kuroda, “A 9-bit 100MS/s Tri-level Charge Redistribution SAR ADC with Asymmetric CDAC Array,” VLSI Design, Automation, and Test (VLSI-DAT), 2012 International Symposium on
    [16] Ruoyu Xu, Bing Liu, and Jie Yuan, ” Digitally Calibrated 768-kS/s 10-b Minimum-Size
    SAR ADC Array With Dithering, ” Solid-State Circuits, IEEE Journal
    [17] Y.-Z. Lin, C.-C. Liu, G.-Y. Huang, Y.-T. Shyu, and S.-J. Chang, “A 9-bit 150-ms/s 1.53-mw subranged sar adc in 90-nm cmos,” in VLSI Circuits (VLSIC), 2010 IEEE Symposium on, june 2010, pp. 243 –244.
    [18] Sheung Yan Ng, Bahar Jalali, Pengbei Zhang, James Wilson and Mohammad Ismail, “A low-voltage CMOS 5-bit 600MHz 30mW SAR ADC for UWB wireless Receivers,”Circuits and Systems, 2005. 48th Midwest Symposium on
    [19] Sanjay G. Talekar, S. Ramasamy, G. Lakshminarayanan, B. Venkataramani, “500MS/s 4-b Time Interleaved SAR ADC using Novel DAC Architecture,”Quality Electronic Design, 2009. ASQED 2009. 1st Asia Symposium on
    [20] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier, and J. H. Huijsing, “A compact power-efficient 3 V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries,” IEEE J. Solid-State Circuits, vol. 29, pp. 1505–1512, Dec. 1994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE