簡易檢索 / 詳目顯示

研究生: 陳鈺民
Yu Min Chen
論文名稱: 利用法布里-珀羅雷射二極體的自注入鎖模機制來進行光纖通訊中10Gb/s信號之全光學波形重建
All-optical Waveform Reshaping of 10-Gb/s Signal Using a Single Injection-Locked Fabry-Perot Laser Diode
指導教授: 馮開明
Kai-Ming Feng
蕭高智
Kao-Chih Syao
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 65
中文關鍵詞: 法布里-珀羅自注入
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,用全光學的方式來作光信號的再放大器和波形重建已漸漸受到重視。傳統上當光訊號傳輸了一段距離的之後,除了本身信號衰減外,也會加入雜訊與色散的影響。而在2004年一篇利用Fabry-Perot雷射二極體作10 Gb/s信號的再放大與波形重建,主要是利用two-mode injection-locking的機制來達成,但此機制需要利用一個額外的可調波長雷射來壓制因信號作切換時所造成的阻尼現象。
    而在此篇論文中,我們提出了另一種新的架構來代替這一個額外的可調波長雷射。其工作方式主要是將fiber Bragg grating (FBG) 封裝在Fabry-Perot雷射二極體的輸出端,這樣便可以利用自注入(self-seeding)的方式產生雷射信號以代替原本額外的可調波長雷射。而在我的論文中,一開始先探討傳統上利用two-mode injection-locking的機制作10 Gb/s信號的再放大與波形重建有什麼優缺點,也實際地重建出實驗架構。接著將已失真的1.25 Gb/s和2.5 Gb/s信號傳入我們的實驗架構中,藉由在接收端觀察眼圖 (eye-diagram)的變化以判斷波形重建的效果好壞。同樣地,在討論利用自注入(self-seeding)的方式作波形重建時,由於我們的訴求是將可調波長雷射給取代掉,所以必須注意的事是原本可調式波長雷射是持續性的輸出光源,所以在利用fiber Bragg grating (FBG)時,必須要很注意地調整反射率。而為了達到高速的10 Gb/s信號波形重建,在封裝光纖光柵時與雷射二極體間的距離也希望能盡量變短(1cm)。最後也成功地將傳輸了100公里單模光纖的10 Gb/s信號作波形重建,所造成的功率代價(Power Penalty)可以壓制在3 dB以內,與原本未補償前的9 dB作比較,的確改善了很多。所以利用自注入的機制來作波形重建是可行的。


    In recent paper of all-optical regeneration, they usually used two side-modes injection-locked the Fabry-Perot laser diode and the use of the continuous-wave (CW) probe light suppresses the carrier-induced relaxation oscillation, and high-speed operation is expected. We have proposed and demonstrated all-optical 2R regeneration using a self-seeding injection-locked FP-LD. The original CW probe light was substituted by a self-seeding signal which was produced by a fiber bragg grating packaged in the Fabry-Perot laser diode. We have successfully performed the 10 Gb/s PRBS data 100-km transmission with regeneration at 50 km. From the bit-error rate diagram, the power penalty of 100-km transmission is 3 dB for the self-seeding mechanism and 3.7 dB for the two side-mode injection mechanism.

    CONTENTS Chinese Abstract………………………………………………..Ⅰ English Abstract…………………………………………...……Ⅱ Acknowledgments………………………………………………ⅢContents…………………………………………………………Ⅳ Chapter 1 General Introduction 1 1.1 Importance of all-optical 2R regeneration…………………………………......1 1.2 Overview of all-optical 2R regeneration………………………………………..2 Chapter 2 Basic Concept of Injection Mechanism Using FP-LD 3 2.1 Preface of the Fabry-Perot laser diode………………………………………..3 2.2 Principle of the Fabry-Perot laser diode……………………………………....3 2.2.1 Generating a coherent emission in the laser diode……………………3 2.2.2 Threshold condition and longitudinal modes of FP-LD………………6 2.3 Preface of injection locking…………………………………………………….9 2.4 Switching mechanism…………………………………………………………10 2.4.1 Dependence of the probe transmission on the detuning……………..11 2.4.2 Control of the probe detuning by the data signal……………………13 2.5 Theoretical description………………………………………………………..13 2.5.1 Carrier density equation………………………………………………14 2.5.2 Field equations for the locked modes…………………………………16 2.5.3 Locking Characteristics………………………………………………..18 Chapter 3 Experimental Results and Discussions of Previous All-optical 2R regeneration 21 3.1 Waveform reshaping based on injection-locking mechanism……………...21 3.1.1 Definition of the threshold power…………………………………….21 3.1.2 Dynamic locking power range………………………………………..23 3.2 Main-mode injection locking…………………………………………………24 3.3 Single side-mode injection locking…………………………………………...25 3.3.1 The mechanism of single side mode injection………………………..25 3.3.2 The effect of the relaxation oscillation frequency……………………26 3.4 Two side-mode injection locking……………………………………………..27 3.4.1 The mechanism of two side-mode injection locking…………………27 3.4.2 2.5 GHz signal regeneration using two side-modes injection Locking………………………………………………………………...29 3.4.3 Signal operating mode v.s the probe mode…………………………..31 3.4.3-1 Probe power -6 dBm at FP-LD bias 26 mA (signal: 1.25 GHz)………...………………………………...31 3.4.3-2 Probe power -6 dBm at FP-LD bias 16 mA (signal: 1.25 GHz)…………………………………………..33 3.4.4 Dynamic injection power range v.s signal mode……………………..35 3.4.4-1 Probe mode 0 at FP-LD bias 26 mA (signal: 1.25 GHz)….35 3.4.4-2 Probe mode 8 at FP-LD bias 26 mA (signal: 1.25 GHz)….39 Chapter 4 Experimental Results and Discussions of New All-optical 2R Regeneration Using Self-seeding Mechanism 42 4.1 New configurations using FBG self-seeding mechanism…………........................42 4.1.1 Preface of self-seeding mechanism…………………………………………42 4.1.2 Principle of using self-seeding mechanism………………………………...44 4.2 Test self-seeding mechanism……………………………………………………….45 4.2.1 Fused FBG with 10-cm long cavity at 1.25 Gb/s………………………….45 4.2.2 Fused FBG with 1-cm long cavity at 2.5 Gb/s…………………………….47 4.3 Experimental setup and results for 10 Gb/s all-optical 2R regeneration………49 4.3.1 Test distorted PRBS Data at 1.25 Gb/s…………………………………….49 4.3.2 Test distorted PRBS Data at 2.5 Gb/s……………………………………...51 4.3.3 100-km-long transmission at 10 Gb/s………………………………………53 4.4 Discussions…………………………………………………………………………..58 4.4.1 100-km-long transmission at 10 Gb/s using two side-mode injection……58 4.4.2 Comparison of two schemes………………………………………………..60 Chapter 5 Conclusion 62 Reference 63

    Reference
    [1] S. Boscolo, S. K. Turitsyn, and K. J. Blow, “Study of the operating regime for all-optical passive 2R regeneration of dispersion-managed RZ data at 40 Gb/s using in-line NOLMs,” IEEE Photon. Technol. Lett., vol. 14, pp. 30–32, Jan. 2002.

    [2] S. Watanabe, F. Futami, R. Okabe, Y. Takita, S. Ferber, R. Ludwig, C. Schubert, C. Schmidt, and H. G.Weber, “160 Gbit/s optical 3R-regenerator in fiber transmission experiment,” in Tech. Dig. Optical Fiber Communications (OFC 2003), Atlanta, GA, 2003, Paper PD16.

    [3] D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40-Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett., vol. 12, pp. 332–334, Mar. 2000.

    [4] S. Yamashita and D. Matsumoto, “Waveform reshaping based on injection locking of a distributed-feedback semiconductor laser,” IEEE Photon. Technol. Lett., vol. 12, pp. 1388–1390, Oct. 2000.

    [5] A. Kuramoto and S. Yamashita, “All optical regeneration using a side-mode injection-locked semiconductor laser,” in Optical Electronics and Communications Conf. (OECC 2002), July 2002, Paper 11C2-4.

    [6] S. Yamashita and D. Matsumoto, “All optical regeneration using a side-mode injection-locked semiconductor laser,” IEEE J. Select. Topics Quantum Electron., vol. 9, pp. 1283–1287, Sept./Oct. 2003.

    [7] I. Petitbon, P. Gallion, G. Debarge, and C. Chabran, “Locking bandwidth and relaxation oscillations of injection-locked semiconductor laser,” IEEE. J. Quantum. Electron., vol. 24, pp. 148–154, Feb. 1988.

    [8] R. Frey and J. G. Provost, “Propagation equation based theory of intermodal injection locking in semiconductor lasers,” IEEE J. Quantum Electron., vol. 26, pp. 1705–1712, Oct. 1990.

    [9] J. Wang, M. K. Halder, L. Li, and F. V. C. Mendis, “Enhancement of modulation bandwidth of laser diodes by injection locking,” IEEE Photon. Technol. Lett., vol. 8, pp. 34–36, Jan. 1996.

    [10] J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol. 9, pp. 1325–1327, Oct. 1997.

    [11] T. B. Simpson, J. M. Liu, and A. Gavrielides, “Small-signal analysis of modulation characteristics in a semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., vol. 32, pp. 1456–1468, Aug. 1996.

    [12] X. J. Meng, T. Chau, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection,” Electron. Lett., vol. 34, pp. 2031–2032, Oct. 1998.

    [13] L. Goldberg, H. F. Taylor, and J. F.Weller, “Intermodal injection locking of semiconductor lasers,” Electron. Lett., vol. 20, pp. 809–811, Sept. 1984.

    [14] , “Intermodal injection locking and gain profile measurement of GaAlAs lasers,” IEEE J. Quantum Electron., vol. QE-20, pp. 1226–1229, Nov. 1984.

    [15] J. M. Luo, M. Osinski, and J. G. Mclnerney, “Side-mode injection locking of semiconductor lasers,” Proc. Inst. Elect. Eng., pt. J, vol. 136, no. 1, pp. 33–37, 1989.

    [16] J. M. Luo and M. Osinski, “Stable-locking bandwidth in sidemode injection locked semiconductor lasers,” Electron. Lett., vol. 27, pp. 1737–1739, Sept. 1991.

    [17] , “ Multimode small-signal analysis of side-mode injection-locked semiconductor lasers,” Jpn. J. Appl. Phys., vol. 31, pp. L685–L688, June 1992.

    [18] O. Lidoyne, P. Gallion, and G. Debarge, “Phase jitter in an injectionlocked semiconductor laser,” Opt. Lett., vol. 15, pp. 1144–1146, Oct. 1990.

    [19] J. C. Cartledge, “Theoretical performance of multigigabit-per-second lightwave systems using injection locked semiconductor lasers,” J. Lightwave Technol., vol. 8, pp. 1017–1022, 1990.

    [20] S. Mohrdiek, H. Burkhard, and H. Walter, “Chirp reduction of directly modulated semiconductor lasers at 10 Gb/s by strong CW light injection,” J. Lightwave Technol., vol. 12, pp. 418–424, Mar. 1994.

    [21] R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron., vol. QE-18, pp. 976–983, June 1982.

    [22] M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beating vibration of the electron density in semiconductor lasers,” J. Appl. Phys., vol. 66, no. 1, pp. 81–89, July 1989.

    [23] K. J. Ebeling, Integrierte Optoelektronik. Berlin, Germany: Springer Verlag, 1989.

    [24] E. Winter and E. P. Ippen, “Nonlinear carrier dynamics in GaxIn1_xAsyP1_y compounds,” Appl. Phys. Lett., vol. 44, no. 10, pp. 999–1001, May 1984.

    [25] B. Tromborg, H. Olesen, X. Pan, and S. Saito, “Transmission line description of optical feedback and injection locking for Fabry-Perot and DFB lasers,” IEEE J. Quantum Electron., vol. QE-23, pp. 1875–1889, Nov. 1987.

    [26] J. H¨orer, K. Weich, M. M¨ohrle, and B. Sartorius, “Optimization of the optical switching characteristics of two-section Fabry-Perot lasers,” IEEE Photon. Technol. Lett., vol. 5, pp. 1273–1276, Mar. 1993.

    [27] W. H. Press, A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C. New York: Cambridge Univ. Press, 1992.

    [28] K. Petermann, Laser Diode Modulation and Noise. Dordrecht, The Netherlands: Kluwer Academic, 1988.

    [29] W. Idler, M. Schilling, K. Daub, E. Lach, G. Laube, U. Koerner, D. Baums, and K. W¨unstel, “Compact monolithic wavelength converter with strong signal improvement including chirp compression,” in Proc. 21st Eur. Conf. Opt. Comm., Brussels, Belgium, Sept. 1995, vol. 2, pp. 621–624, paper We.L.1.1.

    [30] P. Gallion and G. Debarge, “Influence of amplitude-phase coupling on the injection locking bandwidth of a semiconductor laser,” Electron. Lett., vol. 21, no. 7, pp. 264–265, Mar. 1985.

    [31] J.-M. Luo and M. Osinski, “Multimode small-signal analysis of sidemode injection-locked semiconductor lasers,” Jpn. J. Appl. Phys., vol. 31, no. 6A, pp. 685–688, June 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE