研究生: |
顏惠君 Hui-Chun Yen |
---|---|
論文名稱: |
交流電漿顯示器放電光譜分析 Spectroscopic analysis of AC-PDP discharges |
指導教授: |
柳克強
Keh-Chyang Leou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 電子溫度 、效率 、光譜量測 、ICCD |
外文關鍵詞: | electron temperature, efficiency, spectroscopic measurement, ICCD |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目的是發展一套光譜測量方法以推測電子溫度的趨勢。電子溫度的降低會導致電子經由間接躍遷到較高能階的比例降低而造成703 nm譜線的強度減弱。實驗主要是藉由光譜量測 703 nm/ 585 nm的光強度比例來推測電子溫度和維持電壓充填氣體比例及氣壓的關係。由於氖氣的激發能比氙氣高,陽極部分的電子溫度比較低,並不足以激發氖氣。因此,我利用一套超高速攝影系統(ICCD),在鏡頭前加裝濾鏡以量測585 nm和703 nm在陰極部分發出的光。本論文使用清華大學工科系電漿顯示器實驗室陳龍志和江弘棋發展出的二維流體模型,計算出不同參數下的電子溫度,並和實驗結果作比較。
增加電壓將導致電場增強,電子就能得到更多的能量,因此電子溫度增加。當維持電壓從170 V增加到190 V,對整個放電槽來說703 nm/ 585 nm的光強度比例會增加3.92%,在陰極部分會增加5.01%,發光效率減少7.61%。
氖氣的游離能(21.56 eV)比氙氣的游離能(12.13 eV)高。當氙氣比例增加,電子會傾向於游離氙原子,造成平均電子溫度下降。當氣體比例從5%的氙氣增加到10%,對整個放電槽來說703 nm/ 585 nm的光強度比例減少49.41%,在陰極部分會減少50.45%。藉由模擬計算算出的電子溫度在整個放電槽區域減少15.19%,在陰極部分減少20.22%,發光效率增加43.76%。
當氣壓從400 torr增加到475 torr,對整個放電槽來說703 nm/ 585 nm的光強度比例增加0.66%,在陰極部分會減少4.02%。藉由模擬計算算出的電子溫度在整個放電槽區域減少9.05%,在陰極部分減少8.06%,發光效率增加4.70%。
在高氣壓的情況下,電子溫度會降低的原因和增加氙氣氣體比例的理由相同。但是當氣體比例從5%的氙氣增加到10%時,氙氣粒子數目加倍,可是當氣壓從400 torr增加到475 torr時,氙氣粒子數目只增加了18.75%。因此,氣壓對電子溫度的影響比氙氣氣體比例對電子溫度的影響弱。
The purpose of this study is to develop a method of spectroscopic measurement to estimate the trend of electron temperature. A lowering of electron temperature would decrease the 703 nm emission line by reducing the indirect pumping to the upper level. The experiment is focused on the 703 nm/ 585 nm emission strength ratio measured by spectrometer which was used to compute the relations of electron temperature in terms of sustain voltage, filling gas ratio and gas pressure.
Because Ne excited state is generated by high energy electrons (18.96 eV), electron energy was much lower in the anode region that electrons were energetic enough to generate Xe excited state, but not enough for Ne excited state. Therefore, an intensified charge coupled device (ICCD) camera with optical filters was used to measure visible emission from neon at 585 nm and 703 nm at cathode area.
A simulation code developed by Chen Lung-Chih and Chiang Hung Chi at ESS PDP lab in NTHU is used in this study. The simulation code is a two-dimensional PDP simulator based on fluid model. The simulator is used to calculate electron temperature and compare to this experiment.
Increasing voltage would lead to stronger electric field, and electron can get more energy from the strong electric field, so electron temperature increase. The sustain voltage increases from 170 volt to 190 volt, the ratio of 703 nm/ 585 nm increases 3.92% in whole cell, and increases 5.01% in cathode area. The efficiency decreases 7.61%.
The Ne ionization energy (21.56 eV) is higher than Xe (12.13 eV). When Xe concentration increases, electrons are more likely to ionize Xe atoms in stead of Ne atoms. Therefore, the average electron temperature is lower for high Xe concentration. The gas ratio increases from 5% Xe to 10% Xe, the ratio of 703 nm/ 585 nm decreases 49.41% in the whole cell, and decreases 50.45% in cathode area. The electron temperature results from the 2-D fluid numerical calculation decreases 15.19% in the whole cell, and decreases 20.22% in cathode area. The efficiency increases 43.76%.
The gas pressure increases from 400 torr to 475 torr, the ratio of 703 nm/ 585 nm increases 0.66% in whole cell, and decreases 4.02% in cathode area. The electron temperature results from the 2-D fluid numerical calculation decreases 9.05 % in the whole cell, and decreases 8.06 % in cathode area. The efficiency increases 4.70%.
The reason that high gas pressure results in lower electron temperature is the same as high Xe gas ratio. When the Xe gas concentrations change from 5% to 10%, the Xe particle number has doubled. When the gas pressures change from 400 torr to 475 torr, the Xe particle number increases only 18.75%. Therefore, the dependence of electron temperature on gas pressure is weaker than on Xe gas ratio.
[1] J. P. Boeuf, J. Phys. D: Appl. Phys., 36, R53 (2003)
[2] M. F. Gillies et al., J. Appl. Phys., 91, 10, 6315 (2002)
[3] Y. Ikeda et al., J. Appl. Phys., 88, 6216 (1999)
[4] E.H. Choi et a.l, IEEE Trans. Plasma Sci., 30, 6, 2160 (2002)
[5] D. Kirn et al., 2000 SID Int. Symp. Digest, 706 (2002)
[6] http://www.knfp.net/kpsdpp/KPS_Poster/2003_kps/2003Fall.htm
[7] K. Koike et al., IDW'03, 869(2003)
[8] Janos Inczedy et al., “Compendium of Analytical Nomenclature”, Oxford, Blackwell Scientific Publications, 1997
[9] Michael A. Lieberman et al., “Principles of Plasma Discharges and Materials Processing”, New York, John Wiley & Sons,1994
[10] Y. Ikeda et al., J. Appl. Phys., 86, 2431(1999)
[11] J.C. Ahn et al., IDW'01, 925(2001)
[12] K. Hagiwara et al., IDW '99, 615 (1999)
[13] L. F. Weber, EuroDisplay '99, Berlin, Germany, September 1999(unpublished)
[14] Hagelaar, Gerardus Johannes Maria, Ph.D. thesis (2000)
[15] 江弘棋, 國立清華大學工程與系統科學所碩士論文(2004)
[16] B. Min et al., J. Vac. Sci. Technol. B 19(1), 7(2001)
[17] http://physics.nist.gov/cgi-bin/AtData/lines_form
[18] K. Suzuki et al., J. Appl. Phys., 88, 5605(2000)
[19] S. Hassaballa et al., IEEE Trans. Plasma Sci., 32, 1, l27 (2004)
[20] I. R. Cho et al., Surface and Coatings Technology, 171, 222 (2003)
[21] M.F. Gillies, IDW'0l, 837 (2001)
[22] T. Dekker et al., IDW’01, 917 (2001)
[23] http://www.jobinyvon.com/usadivisions/Mono/product/triax.pdf
[24] i-spectrum ONE ICCD User Manual, JOBIN YVON, Mar. 2000.
[25] J. P. Holman, “Experimental Methods for Engineers”, Boston, McGraw-Hill, Inc., 2001
[26] 吳智瑋, 國立清華大學工程與系統科學所碩士論文(2005)
[27] 何彥政, 國立清華大學工程與系統科學所碩士論文(2004)