研究生: |
吳東耘 Wu, Tung-Yun |
---|---|
論文名稱: |
全基因組序列定序技術與反向工程方法應用於研究異丁醇高耐受度大腸桿菌 Whole genome sequencing and reverse engineering isobutanol tolerant strain in Escherichia coli |
指導教授: |
鄭西顯
Jang, Shi-Shang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 生質能源 、異丁醇 、耐受度 、全基因組定序 |
外文關鍵詞: | biofuels, isobutanol, tolerance, whole genome sequencing |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Recently, interest in the production of isobutanol as a potential substitute for gasoline has risen. Previously, Escherichia coli has been metabolically engineered to produce isobutanol, which reached more than 20g/L in the optimized pathways. Here we aim to identify genotype-phenotype relationships in a strain of E. coli tolerant to high concentrations of isobutanol. In this study, we combined cell evolution with whole genome sequencing technology to identify genotypes potentially conferring isobutanol tolerance phenotype from isolated mutant and the experimental verification confirms gene acrA, gatY, tnaA, marC-marRAB, yhbJ are responsible for isobutanol tolerance phenotype. Further investigation showed inactivation of the AcrAB/TolC multidrug efflux transport and MarC-MarRAB multiple antibiotic resistance systems increase isobutanol tolerance. Additionally, the inactivation of YhbJ, which regulates the synthesis of glucosamine-6-phosphate, leads to increased isobutanol tolerance. Two additional gene knockouts, gatY and tnaA, were also identified as key elements for isobutanol tolerance. We successfully reconstructed E. coli strains with increased tolerance to isobutanol by combining these five deletions. In addition, the comparison of isobutanol response and other solvent stress is discussed. Lastly, our isobutanol production data showed no elevated productivity in isobutanol tolerant mutant, which suggests the productivity may not correlate to the tolerance at the growth phase but in stationary phase. The approach described here could apply to comprehensive chemical tolerances of microorganisms and provide a general framework to design and construct tolerant mutants.
Alekshun M, Levy S (1999) The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends in microbiology 7: 410-413
Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314: 1565-1568
AONO R, AIBE K, INOUE A, HORIKOSHI K (1991) Preparation of Organic Solventtolerant Mutants from Eschenchia coli K-12. Agricultural and Biological Chemistry 55: 1935-1938
Aono R, Kobayashi H (1997) Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Applied and environmental microbiology 63: 3637
Aono R, Kobayashi H, Joblin K, Horikoshi K (1994) Effects of organic solvents on growth of Escherichia coli K-12. Bioscience, biotechnology, and biochemistry 58: 2009-2014
Ariza R, Cohen S, Bachhawat N, Levy S, Demple B (1994) Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. Journal of Bacteriology 176: 143-148
Atsumi S, Cann. AF, Connor. MR, Shen. CR, Smith. KM, Brynildsen. MP, Chou. KJY, Hanai T, Liao JC (2007) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10: 305-311
Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86-89
Atsumi S, Liao J (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Current opinion in biotechnology 19: 414-419
Atsumi S, Wu T, Eckl E, Hawkins S, Buelter T, Liao J (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Applied Microbiology and Biotechnology 85: 651-657
Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC (2009) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol
Awano N, Wada M, Kohdoh A, Oikawa T, Takagi H, Nakamori S (2003) Effect of cysteine desulfhydrase gene disruption on L-cysteine overproduction in Escherichia coli. Applied Microbiology and Biotechnology 62: 239-243
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko K, Tomita M, Wanner B, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Molecular Systems Biology 2: 2006.0008
Baer S, Blaschek H, Smith T (1987) Effect of butanol challenge and temperature on lipid composition and membrane fluidity of butanol-tolerant Clostridium acetobutylicum. Applied and environmental microbiology 53: 2854-2861
Barbosa T, Levy S (2000) Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. Journal of Bacteriology 182: 3467-3474
Bennett S (2004) Solexa ltd. pgs 5: 433-438
Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Applied and environmental microbiology 50: 1165-1170
Brinkkötter A, Klöß H, Alpert C, Lengeler J (2002) Pathways for the utilization of N-acetyl-galactosamine and galactosamine in Escherichia coli. Molecular microbiology 37: 125-135
Brynildsen MP, Liao JC (2009) An integrated network approach identifies the isobutanol response network of Escherichia coli. Molecular Systems Biology 5: 277
Cann A, Liao J (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Applied Microbiology and Biotechnology 81: 89-98
Connor M, Cann A, Liao J (2010) 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Applied Microbiology and Biotechnology 86: 1155-1164
Connor M, Liao J (2008) Engineering of an Escherichia coli Strain for the Production of 3-Methyl-1-Butanol. Applied and environmental microbiology 74: 5769-5775
Datsenko K, Wanner B (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences 97: 6640-6645
De Smet M, Kingma J, Witholt B (1978) The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli. Biochimica et Biophysica Acta (BBA)-Biomembranes 506: 64-80
Diaz E, Ferrandez A, Prieto M, Garcia J (2001) Biodegradation of aromatic compounds by Escherichia coli. Microbiology and Molecular Biology Reviews 65: 523-569
Gonzalez R, Tao H, Purvis JE, York SW, Shanmugam KT, Ingram LO (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Prog 19: 612-623
Halling S, Simons R, Way J, Walsh R, Kleckner N (1982) DNA sequence organization of IS10-right of Tn10 and comparison with IS10-left. P Natl Acad Sci USA 79: 2608-2612
Hansch C, Anderson S (1967) The effect of intramolecular bydrophobic bonding on partition coefficients. The Journal of Organic Chemistry 32: 2583-2586
Harnisch M, Möckel H, Schulze G (1983) Relationship between log Pow, shake-flask values and capacity factors derived from reversed-phase high-performance liquid chromatography for n-alkylbenzenes and some oecd reference substances. Journal of Chromatography A 282: 315-332
Hirakawa H, Inazumi Y, Masaki T, Hirata T, Yamaguchi A (2004) Indole induces the expression of multidrug exporter genes in Escherichia coli. Molecular microbiology 55: 1113-1126
Hollands K, Busby S, Lloyd G (2007) New targets for the cyclic AMP receptor protein in the Escherichia coli K-12 genome. FEMS microbiology letters 274: 89-94
Kalamorz F, Reichenbach B, März W, Rak B, Görke B (2007) Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. Molecular microbiology 65: 1518-1533
Klaer R, Kühn S, Tillmann E, Fritz H, Starlinger P (1981) The sequence of IS4. Molecular and General Genetics MGG 181: 169-175
Lee J, Lee K, Yeo W, Park S, Roe J (2009) SoxRS-Mediated Lipopolysaccharide Modification Enhances Resistance against Multiple Drugs in Escherichia coli. Journal of Bacteriology 191: 4441-4450
Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research 18: 1851-1858
Lin Y, Blaschek H (1983) Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Applied and environmental microbiology 45: 966-973
Ma D, Cook D, Alberti M, Pon N, Nikaido H, Hearst J (1995) Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Molecular microbiology 16: 45-55
Mardis E (2008) Next-generation DNA sequencing methods. 9: 387-402
Margulies M, Egholm M, Altman W, Attiya S, Bader J, Bemben L, Berka J, Braverman M, Chen Y, Chen Z (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437: 376-380
McDermott P, McMurry L, Podglajen I, Dzink-Fox J, Schneiders T, Draper M, Levy S (2008) The marC gene of Escherichia coli is not involved in multiple antibiotic resistance. Antimicrobial agents and chemotherapy 52: 382-383
Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92: 255-264
Nicoloff H, Perreten V, McMurry L, Levy S (2006) Role for tandem duplication and lon protease in AcrAB-TolC-dependent multiple antibiotic resistance (Mar) in an Escherichia coli mutant without mutations in marRAB or acrRAB. Journal of Bacteriology 188: 4413-4423
Nobelmann B, Lengeler J (1996) Molecular analysis of the gat genes from Escherichia coli and of their roles in galactitol transport and metabolism. Journal of Bacteriology 178: 6790-6795
Okusu H, Ma D, Nikaido H (1996) AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. Journal of Bacteriology 178: 306-308
Pos K (2009) Drug transport mechanism of the AcrB efflux pump. BBA-Proteins and Proteomics 1794: 782-793
Qi W, Kaser M, Roltgen K, Yeboah-Manu D, Pluschke G (2009) Genomic diversity and evolution of Mycobacterium ulcerans revealed by next-generation sequencing. PLoS Pathog 5: e1000580
Rutherford B, Dahl R, Price R, Szmidt H, Benke P, Mukhopadhyay A, Keasling J (2010) Functional Genomic Study of Exogenous n-Butanol Stress in Escherichia coli. Applied and environmental microbiology 76: 1935-1945
Sanger F, Nicklen S, Coulson A (1977) DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences 74: 5463-5467
Sentheshanmuganathan S, Elsden S (1958) The mechanism of the formation of tyrosol by Saccharomyces cerevisiae. Biochemical Journal 69: 210-218
Shen C, Liao J (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10: 312-320
Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26: 1135-1145
Shendure J, Porreca G, Reppas N, Lin X, McCutcheon J, Rosenbaum A, Wang M, Zhang K, Mitra R, Church G (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309: 1728 - 1732
Shyu J, Lies D, Newman D (2002) Protective role of tolC in efflux of the electron shuttle anthraquinone-2, 6-disulfonate. Journal of Bacteriology 184: 1806-1810
Sikkema J, De Bont J, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiology and Molecular Biology Reviews 59: 201-222
Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the viscosity of membrane lipids in Escherichia coli. Proc Natl Acad Sci USA 71: 522–525
Smith DR, Quinlan AR, Peckham HE, Makowsky K, Tao W, Woolf B, Shen L, Donahue WF, Tusneem N, Stromberg MP, Stewart DA, Zhang L, Ranade SS, Warner JB, Lee CC, Coleman BE, Zhang Z, McLaughlin SF, Malek JA, Sorenson JM et al (2008) Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res 18: 1638-1642
Smith K, Cho K, Liao J (2010) Engineering Corynebacterium glutamicum for isobutanol production. Applied Microbiology and Biotechnology 87: 1045-1055
Srivatsan A, Han Y, Peng J, Tehranchi AK, Gibbs R, Wang JD, Chen R (2008) High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies. PLoS Genet 4: e1000139
Sulavik M, Houseweart C, Cramer C, Jiwani N, Murgolo N, Greene J, DiDomenico B, Shaw K, Miller G, Hare R (2001) Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrobial agents and chemotherapy 45: 1126-1136
Takatsuka Y, Nikaido H (2009) Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism. Journal of Bacteriology 191: 1729-1737
Tatusov R, Fedorova N, Jackson J, Jacobs A, Kiryutin B, Koonin E, Krylov D, Mazumder R, Mekhedov S, Nikolskaya A (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41
Thomason L, Costantino N (2007) E. coli genome manipulation by P1 transduction. Current protocols in molecular biology/edited by Frederick M Ausubel[et al]
Tomas C, Beamish J, Papoutsakis E (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. Journal of Bacteriology 186: 2006-2018
Tomas C, Welker N, Papoutsakis E (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Applied and environmental microbiology 69: 4951-4965
Viveiros M, Dupont M, Rodrigues L, Couto I, Davin-Regli A, Martins M, Pagès J, Amaral L (2007) Antibiotic stress, genetic response and altered permeability of E. coli. PLoS One 2: e365
Viveiros M, Jesus A, Brito M, Leandro C, Martins M, Ordway D, Molnar A, Molnar J, Amaral L (2005) Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and expression of proton gradient-dependent multidrug efflux pump genes. Antimicrobial agents and chemotherapy 49: 3578-3582
Vollherbst-Schneck K, Sands JA, Montenecourt BS (1984) Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824. Applied and environmental microbiology 47: 193-194
Wang D, Ding X, Rather P (2001) Indole can act as an extracellular signal in Escherichia coli. Journal of Bacteriology 183: 4210-4216
Watanabe T, Snell E (1972) Reversibility of the tryptophanase reaction: synthesis of tryptophan from indole, pyruvate, and ammonia. P Natl Acad Sci USA 69: 1086-1090
White D, Goldman J, Demple B, Levy S (1997) Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. Journal of Bacteriology 179: 6122-6126
Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20: 132-138