研究生: |
洪東銘 Dong-Ming Hong |
---|---|
論文名稱: |
內嵌穿晶片導線三維晶片模組之熱應力分析及最佳化 Thermal Stress Analysis and Optimization of 3D Chip Module |
指導教授: |
葉孟考
Meng-Kao Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 穿晶片導線 、熱應力 、最佳化 |
外文關鍵詞: | Through-silicon via, Thermal stress, Optimization |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用系統整合的技術,如系統級封裝(System in Package, SiP)及系統單晶片(System on Chip, SoC)技術,可將不同功能之元件整合於單一晶片中,成為可提供多功能之封裝元件,然而微小化晶片使得散熱與結構之應力問題更為嚴重。本文主要探討三維影像處理晶片模組之熱應力問題,此晶片為採用穿晶片導線(Through-Silicon Via)佈線結構,由於在晶片內部因熱膨脹係數不匹配而產生應力集中現象。由於此晶片結構較為複雜,因此本文先針對晶片中影像感測模組部份,利用有限單元法進行熱-結構分析與幾何參數研究,以作為分析三維多晶片模組之參考依據,並利用紅外線熱像儀量測晶片表面溫度場,以驗證數值模型之正確性;接著本文以有限單元法模擬受熱負載之三維多晶片模組之結構穩態溫度與應力分佈。為減低結構之熱應力,本文以反應曲面法與田口法探討能有效提昇整體結構可靠度之最佳化設計,並比較兩種最佳化設計方法之差異性。
System in Package (SiP) and System on Chip (SoC) technologies are used to integrate different functional devices into one chip. The smaller the packaged device is, the more important the heat management and mechanics analysis of electronic packaging are. In this work, the steady-state temperature distribution and the corresponding thermal induced stress of the 3D chip with embedded copper through-silicon vias (TSVs) for image processing were analyzed by the finite element method. The finite element software was first used to investigate the effect of the dimensions of the chip with image sensor device under thermal loading. Temperature distribution of a 3D chip was also measured by a noncontact infrared thermography system to verify the numerical model. The steady-state temperature distribution and the corresponding thermal induced stress of the 3D Multi-Chip Module (MCM) with copper vias was simulated by the finite element method. The response surface method (RSM) and the Taguchi method were developed to determine the optimal dimensions of a the chip, such as pitch, diameter and depth of TSV, which can effectively reduce the thermal stress and enhance the structural reliability of the 3D chip module.
參考文獻
1. R. R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, New York, 2001.
2. V. Kripesh, S. W. Yoon, V. P. Ganesh, N. Khan, M. D. Rotaru, W. Fang and M. K. Iyer, “Three-Dimensional System-in-Package Using Stacked Silicon Platform Technology,” IEEE Transactions on Advanced Packaging, Vol. 28, pp. 377-386, 2005.
3. 王智弘, “半導體產業鏈總動員 SiP技術來勢洶洶,” 新電子科技雜誌, 第258期, 2007.
4. J. U. Knickerbocker, L. P. Buchwalter, E. J. Sprogis, H. Gan, R. R. Horton, R. J. Dolastre, S. L. Wrigh and J. Cotte, “3-D Silicon Integration and Silicon Packaging Technology Using Silicon Through-Vias,” IEEE Journal of Solid-State Circuits, Vol. 41, pp. 1718-1725, 2006.
5. R. F. Toftness, A. Boyle and D. Gillen, “Laser Technology for Wafer Dicing and Microvia Drilling for Next Generation Wafers,” Proceedings of SPIE, Vol. 5713, pp. 54-66, 2005.
6. R. A. Lee and D. R. Whittaker, “Laser Created Silicon Vias for Stacking Dies in MCMs,” IEEE Electronics Manufacturing Technology Symposium, pp. 262-265, 1991.
7. A. Polyakov, T. Grab, R. A. Hovenkamp, H. J. Kettelarij, I. Eidner, M. A. d. Samber, M. Bartek and J. N. Burgbartz, “Comparison of Via-Fabrication Techniques for Through-Wafer Electrical Interconnect Applications,” IEEE Electronic Components and Technology Conference, pp. 1466-1470, 1-4 June, 2004.
8. P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans and H. Deligianni, “Damascene Copper Electroplating for Chip Interconnections,” IBM Journal of Research and Development, Vol. 42, pp. 567-674, 1998.
9. C. W. Lin, H. A. Yang, W. C. Wang and W. Fang, “Implementation of Three-Dimensional SOI-MEMS Wafer-Level Packaging Using Through-Wafer Interconnections,” Journal of Micromechanical and Microengineering, Vol. 17, pp. 1200-1205, 2007.
10. C. W. Lin, C. P. Hsu, H. A. Yang, W. C. Wang and W. Fang, “Implementation of SOG Devices with Embedded Through-Wafer Silicon Vias Using a Glass Reflow Process for Wafer-Level 3D MEMS Integration,” IEEE International Conference on Micro Electro Mechanical Systems, pp. 802-805, 13-17 January, 2008.
11. W. H. Chen, H. C. Cheng and H. A. Shen, “An Effective Methodology for Thermal Characterization of Electronic Packaging,” IEEE Transactions on Components and Packaging Technologies, Vol. 26, pp. 222-232, 2003.
12. W. D. Brown, A. P. Malshe, T. A. Railkar, T. G. Lenihm, J. W. Stone, W. T. Sommers and L. W. Schaper, “Thermal Management Issues and Evaluation of A Novel, Flexible Substrate, 3-Dimensional(3-D) Packaging Concept,” IEEE International Conference on Multichip Modules and High Density Package, pp. 135-140, 1998.
13. S. Pinel, A. Marty, J. Tasselli, J. P. Bailbe, E. Beyne, R. V. Hoof, S. Marco, J.R. Morante, O. Vendier and M. Huan, “Thermal Modeling and Management in Ultranthin Chip Stack Technology,” IEEE Transaction on Component and Packaging Technology, Vol. 25, pp. 244-253, 2002.
14. K. Cote, A. Langari and H. Hashemi, “Thermal Characterization of Multi-Die BGA Packages,” IEEE Electronic Components and Technology Conference, pp. 70-75, 25-28 May, 1998.
15. 黃益良,發光二極體封裝之熱分析及最佳化,國立清華大學動力機械工程學系碩士論文,2007。
16. L. L. Mercado, H. Wieser and T. Hauck, “Multichip Package Delamination and Die Fracture Analysis,” IEEE Transaction on Advanced Packaging, Vol. 26, pp. 152-159, 2003.
17. T. Burnette, Z. Johnson, T. Koschmieder and W. Oyler, “Underfilled BGAs for Ceramic BGA Packages and Board-Level Reliability,” IEEE Electronic Components and Technology Conference, pp. 1221-1226, 2000.
18. 蘇建安,散熱強化型塑封球柵陣列電子構裝之分析與設計,國立清華大學動力機械工程學系碩士論文,1999。
19. P. A. Miranda and A. J. Moll, “Thermo-Mechanical Characterization of Copper Through-Wafer Interconnects,” IEEE Electronic Components and Technology Conference, pp. 844-848, 30 May-2 June, 2006.
20. N. Tanaka, T. Sato, Y. Yamaji, T. Morifuji, M. Umemoto and K. Takahashi, “Mechanical Effects of Copper Through-Vias in a 3D Die-Stacked Module,” IEEE Electronic Components and Technology Conference, pp. 473-479, 2002.
21. N. Khan, S.W.Yoon, G. K. Akella, Viswanath, V. P. Ganesh, D. W. Ranganathan, S. Lim and K.Vaidyanathan, “Development of 3D Stack Package Using Silicon Interposer for High Power Application,” IEEE Electronic Components and Technology Conference, pp. 756-760, 30 May-2 June, 2006.
22. Y. Yamaji, T. Ando, T. Morifuji, M. Tomisaka, M. Sunohara, T. Sato and K. Takahashi, “Thermal Characterization of Bare-Die Stacked Modules with Cu Through-Vias,” IEEE Electronic Components and Technology Conference, pp.730-732, 29 May-1 June, 2001.
23. J. Zhang, M. O. Bloomfield, J. Q. Lu, R. J. Gutmann and T. S. Cale, “Modeling Thermal Stresses in 3-D IC Interwafer Interconnects,” IEEE Transactions on Semiconductor Manufacturing, Vol. 19, pp. 437-448, 2006.
24. N. Ranganathan, K. Prasad, N. Balasubramanian, Z. Qiaoer and S. C. Hwee, “High Aspect Ratio Through-Wafer Interconnect for Three Dimensional Integrated Circuits,” IEEE Electronic Components and Technology Conference, pp. 343-348, 19-23 January, 2005.
25. K. N. Tu, “Electromigration in Stressed Thin Films,” Physical Review B, Vol. 45, pp. 1409-1413, 1992.
26. S. W. Liang, T. L. Shao, C. Chen, E. C. C. Yeh and K. N. Tu, “Relieving the Current Crowding Effect in Flip-Chip Solder Joints during Current Stressing,” Journal of Materials Research, Vol. 21, pp. 137-146, 2006.
27. S. Chen, T. K. Lee, J. S. Lee and N. F. Feng, “Solder Joint Thermal Fatigue Analysis of 48-FBGA,” IEEE International Conference on Electronics Packaging Technology, pp. 1-4, 26-29 August, 2006.
28. G. Gustafsson, I. Guven, V. Kradinov and E. Madenci, “Finite Element Modeling of BGA Packages for Life Prediction,” IEEE Electronic Components and Technology Conference, pp. 1059-1063, 21-24 May, 2003.
29. F. X. Che, H.L. Pang and L. H. Xu, “Investigation of IMC Layer Effect on PBGA Solder Joint Thermal Fatigue Reliability,” IEEE Electronics Packaging Technology Conference, Vol. 2, pp. 427-430, 7-9 December, 2005.
30. C. Y. Chen, Y. C. Chao, D. S. Liu and Z. W. Zhuang, “Design of a Novel Chip on Glass Package Solution for CMOS Image Sensor Device,” Microelectronics Reliability, Vol. 46 , pp.1326-1334, 2006.
31. C. C. Lee, C. C. Lee, H. T. Ku, S. M. Chang and K. N. Chiang, “Solder Joints Layout Design and Reliability Enhancements of Wafer Level Packaging Using Response Surface Methodology ,” Microelectronics Reliability, Vol. 47 , pp.196-204, 2007.
32. H. C. Cheng, W. H. Chen and I. C. Chung, “Integration of Simulation and Response Surface Methods for Thermal Design of Multichip Modules,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, pp. 359-372, 2004.
33. H. T. Chen, J. T. Horng, P. L. Chen and Y. H. Hung, “Optimal Design for PPF Heat Sinks in Electronics Cooling Applications,” ASME Journal of Electronic Packaging, Vol. 126, pp. 410-422, 2004.
34. A. Metrol , “Optimization of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages for Robust Design,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 20, pp. 376-388, 1997.
35. Y. S. Lai and T. H. Wang, “Optimal Design towards Enhancement of Board-Level Thermomechanical Reliability of Wafer-Level Chip-Scale Packages,” Microelectronics Reliability, Vol. 47, pp. 104-110, 2007.
36. A. Metrol , “Application of the Taguchi Method to Chip Scale Package (CSP) Design,” IEEE Transactions on Advanced Packaging, Vol. 23, pp. 266-276, 2000.
37. R. S. Chen, H. C. Lin and C. Kung, “Optimal Dimension of PQFP by Using Taguchi Method,” Composite Structures, Vol. 49, pp. 1-8, 2000.
38. J. H. Lienhard, A Heat Transfer Textbook, 2nd ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.
39. G. R. Blackwell, The Electronic Packaging Handbook, CRC Press, Boca Raton, 2000.
40. ANSYS Release 9.0 Documentation, 2004.
41. R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., John Wiley and Sons, NewYork, 2002.
42. A.C. Ugural and S.K. Fenster., Advanced Strength and Applied Elasticity, 4th ed., Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 2004.
43. R. L. Mason, R. F. Gunst and J. L. Hess, Statistical Design and Analysis of Experiments with Applications to Engineering and Science, 2nd ed., John Wiley and Sons, New York, 2003.
44. D. C. Montgomery and G. C. Runger, Applied Statistics and Probability for Engineers, 3rd ed., John Wiely and Sons, New York, 2002.
45. 黎正中譯(1993),穩健設計之品質工程,原作者: M. S. Phadke(1989),Quality Engineering Using Robust Design,台北圖書有限公司,台北。
46. S. Timoshenko, Strength of Materials, Part 2, Advanced Theory and Problems, Van Nostrand Co., Inc, New York, 1956.
47. http://www.memsnet.org/material/
48. M. D. Brown, S. B. Singh, A. P. Malshe, M. H. Gordon, W. F. Schmidt and W. D. Brown, “Thermal and Mechanical Analysis of High-Power GaAs Flip-Chips on CVD Diamond Substrates,” Diamond and Related Materials, Vol. 8, pp. 1927-1935, 1999.
49. 沈信安,四方扁平薄型電子構裝(TQFP)之散熱效能分析,國立清華大學動力機械工程學系碩士論文,2001。
50. 黃東鴻, 李長祺, 李國源, 賴逸少, “功率循環延時對上板封裝體熱傳特性與可靠度的影響,” 中華民國第31屆全國力學會議, 高雄縣, 12月21-22日, 2007.
51. http://www.valleydesign.compyrex.htm
52. S. D. Rajan, B. Nagaraj and M. Mahalingam, “A Shape Optimal Design Methodology for Packaging Design,” IEEE Electronic Components and Technology Conference, pp. 752-758, 18-20 May, 1992.
53. E. R. Fossum, “CMOS Image Sensors: Electronic Camera-On-A-Chip,” IEEE Transaction on Electron Device, Vol. 44, pp. 1689-1698, 1997.
54. D. R. Edwards, M. Hwang and B. Stearns, “Thermal Enhancement of Plastic IC Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, Vol. 18, pp. 57-67, March 1995.
55. “Meet Minitab”, Version 15, Minitab Inc. Pennsylvania, 2007.
56. 湯宗霖,利用靜磁力與勞侖茲力驅動雙軸循序掃描面鏡,國立清華大學動力機械工程學系碩士論文,2006。