簡易檢索 / 詳目顯示

研究生: 蕭碩信
Hsiao, She-Hsin
論文名稱: 以分子自組裝介面工程提升石墨烯電晶體載子傳輸特性
Interface Engineering for the Enhancement of Graphene Transistor Properties using Self-assembled Monolayer
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 李奎毅
Lee, Kuei-Yi
闕郁倫
Chueh, Yu-Lun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 108
中文關鍵詞: 石墨烯載子傳輸分子自組裝介面工程
外文關鍵詞: graphene, carrier transport, self-assembled monolayer, interface engineering
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CVD石墨烯因著具有可大面積量產的優點,是將石墨烯應用於半導體工業的必經之路。然而因著無法避免催化金屬蝕刻與轉移製程,使得CVD石墨烯容易外受到外在環境的汙染以至載子傳輸能力受到大幅度的限制。本論文分析石墨烯的載子傳輸散射機制,探討CVD石墨烯主要的載子傳輸散射機制以及電晶體遲滯現象產生的原因,建立了一個適用於分析CVD石墨烯導電特性的載子傳輸模型。

    我們也試圖發展一套能有效提升CVD石墨烯載子傳輸能力的電晶體製程:使用分子自組裝法(Self-assembled Process)以HMDS(Hexamethyldisilazane)分子對SiO_2基板進行表面改質,解決SiO_2表面缺陷容易吸附汙染物而對石墨烯造成電荷摻雜與遲滯現象的問題。實驗結果證實,分子自組裝表面改質製程能有效的防止汙染物吸附於SiO_2基板表面,提供石墨烯一個更穩定且潔淨的基板環境,降低石墨烯上的殘存電荷密度。然而HMDS表面改質製程經實驗證實無法抑制CVD石墨烯電晶體的遲滯現象,提升石墨烯電晶體載子傳輸特性必須由改良基板表面特性與改善蝕刻轉移製程的潔淨度同時著手。


    CVD graphene is the main way to apply graphene in semiconductor engineering, because of it can be mass production. However, CVD graphene can't avoid the graphene transfer process, it would be polluted very easily and limited the graphene carrier transport properties. The main point of this thesis is to analyze the CVD graphene carrier transport mechanism, find out the carrier transport scattering source and the cause of the transistor hysteresis effect, to build a model fit to analyze the CVD graphene transport.

    We also try to create a transistor fabrication method to enhance CVD graphene carrier transport properties, using HMDS(Hexamethyldisilazane) self-assembled process to modify the surface property of SiO2, to solve the problem that SiO2 easily adsorbs impurity, and therefore affecting the graphene transport properties.

    According to the experiment result, HMDS surface modification process can effectively prevents impurity adsorbs on to SiO2 surface and provides graphene a more clean substrate environment, reduces the graphene residual carrier concentration. However, this process can't suppresses CVD graphene transistor hysteresis effect. In order to enhance graphene transistor properties, we should modify the substrate surface property and improve the cleanliness of the transfer process at the same time.

    論文摘要 目錄 Chapter 1:序論 1.1 半導體製技術發展與侷限 1.2 石墨烯材料 Chapter 2:石墨烯 2.1 石墨烯的基本特性 2.1.1 石墨烯晶體結構 2.1.2 石墨烯電子能帶 2.1.3 石墨烯聲子能帶 2.2 石墨烯的檢測 2.2.1 光學對比法 2.2.2 拉曼光譜分析 Chapter 3:石墨烯場效電晶體電性理論 3.1 石墨烯載子傳輸理論 3.1.1 理想的石墨烯載子傳輸特性 3.1.2 受散射的石墨烯載子傳輸 3.1.3 石墨烯的散射源 3.1.4 石墨烯電晶體電性分析 3.2 石墨烯電晶體的遲滯現象 3.2.1 遲滯現象的來源 3.2.2 遲滯現象分析 Chapter 4:石墨烯元件製備 4.1 石墨烯元件製作流程 4.2 以分子自組進行基板表面改質 4.2.1 分子自組裝表面改質機制 4.2.2 表面改質流程與檢測方法 4.3 石墨烯催化金屬蝕刻與轉移製程 4.4 電子束微影 4.5 反應式離子蝕刻 4.6 熱金屬蒸鍍電極 4.7 電晶體量測方法與量測系統 Chapter 5:石墨烯元件電性量測與分析 5.1 石墨烯電晶體品質參數萃取 5.2 電晶體遲滯現象分析 5.3 HMDS 基板表面改質對石墨烯電晶體的影響 5.3.1 石墨烯電晶體電性分析 5.3.2 石墨烯電晶體遲滯現象分析 Chapter 6:結論與未來展望 參考文獻

    [1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, pp. 230–231, 1948.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
    [3] P. R. Wallace, “The band theory of graphite,” Phys. Rev., vol. 71, pp. 622–634, 1947.
    [4] X. Lu, M. Yu, H. Huang, and R. S. Ruoff, “Tailoring graphite with the goal of achieving single sheets,” Nanotechnology, vol. 10, no. 3, p. 269, 1999.
    [5] K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun., vol. 146, no. 9-10, pp. 351 – 355, 2008.
    [6] R. Murali, Y. Yang, K. Brenner, T. Beck, and J. D. Meindl, “Breakdown current density of graphene nanoribbons,” Appl. Phys. Lett., vol. 94, no. 24, p. 243114, 2009.
    [7] J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S. Ruoff, and L. Shi, “Two-dimensional phonon
    transport in supported graphene,” Science, vol. 328, no. 5975, pp. 213–216, 2010.
    [8] C. Lee, X. Wei, J. W. Kysar, and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene,” Science, vol. 321, no. 5887, pp. 385–388, 2008.
    [9] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency
    of graphene,” Science, vol. 320, no. 5881, p. 1308, 2008.
    [10] K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, and A. K. Geim, “Room-temperature quantum hall effect in graphene,” Science, vol. 315, no. 5817, p. 1379, 2007.
    [11] Y.-M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer, and P. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett., vol. 9, no. 1, pp. 422–426, 2009.
    [12] Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, “100-ghz transistors from wafer-scale epitaxial graphene,” Science,
    vol. 327, no. 5966, p. 662, 2010.
    [13] Y. Wu, Y.-m. Lin, A. A. Bol, K. A. Jenkins, F. Xia, D. B. Farmer, Y. Zhu, and P. Avouris, “High-frequency, scaled graphene transistors on diamond-like carbon,”
    Nature, vol. 472, no. 7341, pp. 74–78, 2011.
    [14] F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater., vol. 6, no. 9, pp. 652–655, 2007.
    [15] Y. Shao, J. Wang, H. Wu, J. Liu, I. A. Aksay, and Y. Lin, “Graphene based electrochemical sensors and biosensors: A review,” Electroanalysis, vol. 22, no. 10, pp. 1027–1036, 2010.
    [16] C. Xu, H. Li, and K. Banerjee, “Modeling, analysis, and design of graphene nanoribbon interconnects,” IEEE Trans. Electron Devices, vol. 56, no. 8, pp. 1567–1578, 2009.
    [17] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706–710, 2009.
    [18] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nat. Nanotech., vol. 5, no. 8, pp. 574–578, 2010.
    [19] C.-C. Lu, Y.-C. Lin, C.-H. Yeh, J.-C. Huang, and P.-W. Chiu, “High mobility flexible graphene field-effect transistors with self-healing gate dielectrics,” ACS Nano, vol. 6, no. 5, pp. 4469–4474, 2012.
    [20] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett., vol. 8, no. 10, pp. 3498–3502, 2008.
    [21] H. Wang, Y. Yang, Y. Liang, J. T. Robinson, Y. Li, A. Jackson, Y. Cui, and H. Dai, “Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode
    material with high capacity and cycling stability,” Nano Lett., vol. 11, no. 7, pp. 2644–2647, 2011.
    [22] L. Qu, Y. Liu, J.-B. Baek, and L. Dai, “Nitrogen-doped graphene as efficient metalfree electrocatalyst for oxygen reduction in fuel cells,” ACS Nano, vol. 4, no. 3,
    pp. 1321–1326, 2010.
    [23] S.-M. Choi, S.-H. Jhi, and Y.-W. Son, “Controlling energy gap of bilayer graphene by strain,” Nano Lett., vol. 10, no. 9, pp. 3486–3489, 2010.
    [24] F. Xia, D. B. Farmer, Y.-m. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,”
    Nano Lett., vol. 10, no. 2, pp. 715–718, 2010.
    [25] F. Schwierz, “Graphene transistors,” Nat. Nanotech., vol. 5, no. 7, pp. 487–496, 2010.
    [26] H. Medina, Y.-C. Lin, D. Obergfell, and P.-W. Chiu, “Tuning of charge densities in graphene by molecule doping,” Adv. Funct. Mater., vol. 21, no. 14, pp. 2687–2692, 2011.
    [27] H. Sojoudi, J. Baltazar, L. M. Tolbert, C. L. Henderson, and S. Graham, “Creating graphene p-n junctions using self-assembled monolayers,” ACS Appl. Mater. Interfaces, vol. 4, no. 9, pp. 4781–4786, 2012.
    [28] J. Baltazar, H. Sojoudi, S. A. Paniagua, J. Kowalik, S. R. Marder, L. M. Tolbert, S. Graham, and C. L. Henderson, “Facile formation of graphene p-n junctions using self-assembled monolayers,” J. Phys. Chem. C, vol. 116, no. 36, pp. 19095–19103, 2012.
    [29] P.-Y. Teng, C.-C. Lu, K. Akiyama-Hasegawa, Y.-C. Lin, C.-H. Yeh, K. Suenaga, and P.-W. Chiu, “Remote catalyzation for direct formation of graphene layers on oxides,” Nano Lett., vol. 12, no. 3, pp. 1379–1384, 2012.
    [30] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, no. 3, pp. 183–191, 2007.
    [31] S. Latil and L. Henrard, “Charge carriers in few-layer graphene films,” Phys. Rev. Lett., vol. 97, p. 036803, 2006.
    [32] B. Partoens and F. M. Peeters, “From graphene to graphite: Electronic structure around the k point,” Phys. Rev. B, vol. 74, p. 075404, 2006.
    [33] S. V. Morozov, K. S. Novoselov, F. Schedin, D. Jiang, A. A. Firsov, and A. K. Geim, “Two-dimensional electron and hole gases at the surface of graphite,” Phys. Rev. B,
    vol. 72, p. 201401, 2005.
    [34] A. C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electronphonon coupling, doping and nonadiabatic effects,” Solid State Commun., vol. 143,
    pp. 47 – 57, 2007.
    [35] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum hall effect and berry’s phase in graphene,” Nature, vol. 438, no. 7065,
    pp. 201–204, 2005.
    [36] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene,” Nature, vol. 438, no. 7065, pp. 197–200, 2005.
    [37] J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón, “Phonon dispersion in graphite,” Phys. Rev. Lett., vol. 92, p. 075501, 2004.
    [38] P. Blake, E. W. Hill, A. H. C. Neto, K. S. Novoselov, D. Jiang, R. Yang, T. J. Booth, and A. K. Geim, “Making graphene visible,” Appl. Phys. Lett., vol. 91, no. 6,
    p. 063124, 2007. [39] Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu, Y. P. Feng, and Z. X. Shen, “Graphene thickness determination using reflection and contrast spectroscopy,” Nano Lett., vol. 7, no. 9, pp. 2758–2763, 2007.
    [40] L. Malard, M. Pimenta, G. Dresselhaus, and M. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, pp. 51 – 87, 2009.
    [41] W. Kohn, “Image of the fermi surface in the vibration spectrum of a metal,” Phys. Rev. Lett., vol. 2, pp. 393–394, 1959.
    [42] S. Piscanec, M. Lazzeri, F. Mauri, A. C. Ferrari, and J. Robertson, “Kohn anomalies and electron-phonon interactions in graphite,” Phys. Rev. Lett., vol. 93, p. 185503, 2004.
    [43] A. C. Ferrari and J. Robertson, “Interpretation of raman spectra of disordered and amorphous carbon,” Phys. Rev. B, vol. 61, pp. 14095–14107, 2000.
    [44] R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, and M. A. Pimenta, “Probing phonon dispersion relations of graphite by double resonance raman
    scattering,” Phys. Rev. Lett., vol. 88, p. 027401, 2001.
    [45] D. L. Mafra, G. Samsonidze, L. M. Malard, D. C. Elias, J. C. Brant, F. Plentz, E. S. Alves, and M. A. Pimenta, “Determination of la and to phonon dispersion relations
    of graphene near the dirac point by double resonance raman scattering,” Phys. Rev. B, vol. 76, p. 233407, 2007.
    [46] M. Lazzeri and F. Mauri, “Nonadiabatic kohn anomaly in a doped graphene monolayer,” Phys. Rev. Lett., vol. 97, p. 266407, 2006.
    [47] J. Yan, Y. Zhang, P. Kim, and A. Pinczuk, “Electric field effect tuning of electronphonon coupling in graphene,” Phys. Rev. Lett., vol. 98, p. 166802, 2007.
    [48] D. A., P. S., C. B., P. S., S. S. K., W. U. V., N. K. S., K. H. R., G. A. K., F. A. C., and S. A. K., “Monitoring dopants by raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotech., vol. 3, no. 4, pp. 210–215, 2008.
    [49] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in twodimensional graphene,” Rev. Mod. Phys., vol. 83, pp. 407–470, 2011.
    [50] J. Tworzydlo, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, “Subpoissonian shot noise in graphene,” Phys. Rev. Lett., vol. 96, p. 246802, 2006.
    [51] Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, “Measurement of scattering rate and minimum conductivity
    in graphene,” Phys. Rev. Lett., vol. 99, p. 246803, 2007.
    [52] E. H. Hwang and S. Das Sarma, “Screening-induced temperature-dependent transport in two-dimensional graphene,” Phys. Rev. B, vol. 79, p. 165404, 2009.
    [53] S. Das Sarma and E. H. Hwang, “Density-dependent electrical conductivity in suspended graphene: Approaching the dirac point in transport,” Phys. Rev. B, vol. 87,
    p. 035415, 2013. [54] J.-H. Chen, C. Jang, M. Ishigami, S. Xiao, W. Cullen, E. Williams, and M. Fuhrer, “Diffusive charge transport in graphene on sio2,” Solid State Commun., vol. 149, pp. 1080 – 1086, 2009.
    [55] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self-consistent theory for graphene transport,” PNAS, vol. 104, no. 47, pp. 18392–18397, 2007.
    [56] E. H. Hwang, S. Adam, and S. Das Sarma, “Carrier transport in two-dimensional graphene layers,” Phys. Rev. Lett., vol. 98, p. 186806, 2007.
    [57] W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Phys. Rev.
    B, vol. 80, p. 235402, 2009.
    [58] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on sio2,” Nat. Nanotech., vol. 3, no. 4,
    pp. 206–209, 2008.
    [59] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klitzing, and A. Yacoby, “Observation of electron-hole puddles in graphene using a scanning
    single-electron transistor,” Nat. Phys., vol. 4, no. 2, pp. 144–148, 2008.
    [60] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth,“The structure of suspended graphene sheets,” Nature, vol. 446, no. 7131, pp. 60–63, 2007.
    [61] Y. Zhang, V. W. Brar, C. Girit, A. Zettl, and M. F. Crommie, “Origin of spatial charge
    inhomogeneity in graphene,” Nat. Phys., vol. 5, no. 10, pp. 722–726, 2009.
    [62] C.-J. Shih, G. L. C. Paulus, Q. H. Wang, Z. Jin, D. Blankschtein, and M. S. Strano, “Understanding surfactant/graphene interactions using a graphene field effect transistor: Relating molecular structure to hysteresis and carrier mobility,” Langmuir, vol. 28, no. 22, pp. 8579–8586, 2012.
    [63] Z. Zhang, H. Xu, H. Zhong, and L.-M. Peng, “Direct extraction of carrier mobility in graphene field-effect transistor using current-voltage and capacitance-voltage
    measurements,” Appl. Phys. Lett., vol. 101, no. 21, p. 213103, 2012.
    [64] X. Du, I. Skachko, A. Barker, and E. Y. Andrei, “Approaching ballistic transport in suspended graphene,” Nat. Nanotech., vol. 3, no. 8, pp. 491–495, 2008.
    [65] A. S. Mayorov, D. C. Elias, I. S. Mukhin, S. V. Morozov, L. A. Ponomarenko, K. S. Novoselov, A. K. Geim, and R. V. Gorbachev, “How close can one approach the dirac point in graphene experimentally?,” Nano Lett., vol. 12, no. 9, pp. 4629–4634, 2012.
    [66] J. Moser, A. Barreiro, and A. Bachtold, “Current-induced cleaning of graphene,” Appl. Phys. Lett., vol. 91, no. 16, p. 163513, 2007.
    [67] J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and B. J. LeRoy, “Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride,” Nat. Mater., vol. 10, no. 4, pp. 282–285, 2011.
    [68] M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitzing, and J. H. Smet, “Graphene on a hydrophobic substrate: Doping reduction and hysteresis
    suppression under ambient conditions,” Nano Lett., vol. 10, no. 4, pp. 1149–1153, 2010.
    [69] Z. Liu, A. A. Bol, and W. Haensch, “Large-scale graphene transistors with enhanced performance and reliability based on interface engineering by phenylsilane
    self-assembled monolayers,” Nano Lett., vol. 11, no. 2, pp. 523–528, 2011.
    [70] B. Huard, N. Stander, J. A. Sulpizio, and D. Goldhaber-Gordon, “Evidence of the role of contacts on the observed electron-hole asymmetry in graphene,” Phys. Rev. B, vol. 78, p. 121402, 2008.
    [71] D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y.-M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, “Chemical doping and electron-hole conduction asymmetry
    in graphene devices,” Nano Lett., vol. 9, no. 1, pp. 388–392, 2009.
    [72] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van den Brink, and P. J. Kelly, “Doping graphene with metal contacts,” Phys. Rev. Lett., vol. 101, p. 026803, 2008.
    [73] T. Stauber, N. M. R. Peres, and F. Guinea, “Electronic transport in graphene: A semiclassical approach including midgap states,” Phys. Rev. B, vol. 76, p. 205423, 2007.
    [74] C. Jang, S. Adam, J.-H. Chen, E. D. Williams, S. Das Sarma, and M. S. Fuhrer, “Tuning the effective fine structure constant in graphene: Opposing effects of dielectric screening on short- and long-range potential scattering,” Phys. Rev. Lett., vol. 101, p. 146805, 2008.
    [75] P. C. Sanfelix, S. Holloway, K. Kolasinski, and G. Darling, “The structure of water on the (0001) surface of graphite,” Surf. Sci., vol. 532-535, pp. 166 – 172, 2003.
    [76] M. Ishigami, J. H. Chen, W. G. Cullen, M. S. Fuhrer, and E. D. Williams, “Atomic structure of graphene on sio2,” Nano Lett., vol. 7, no. 6, pp. 1643–1648, 2007.
    [77] A. Fasolino, J. H. Los, and M. I. Katsnelson, Intrinsic ripples in graphene,” Nat. Mater., vol. 6, no. 11, pp. 858–861, 2007.
    [78] M. Katsnelson and A. Geim, “Electron scattering on microscopic corrugations in graphene,” Phil. Trans. R. Soc. A, vol. 366, no. 1863, pp. 195–204, 2008.
    [79] J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and M. Ishigami, “Charged-impurity scattering in graphene,” Nat. Phys., vol. 4, no. 5, pp. 377–381, 2008.
    [80] S. Fratini and F. Guinea, “Substrate-limited electron dynamics in graphene,” Phys. Rev. B, vol. 77, p. 195415, 2008.
    [81] G. Kalon, Y. J. Shin, V. G. Truong, A. Kalitsov, and H. Yang, “The role of charge traps in inducing hysteresis: Capacitance–voltage measurements on top gated bilayer
    graphene,” Appl. Phys. Lett., vol. 99, no. 8, p. 083109, 2011.
    [82] W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, and H. Dai, “Hysteresis caused by water molecules in carbon nanotube field-effect transistors,” Nano Lett., vol. 3, no. 2, pp. 193–198, 2003.
    [83] R. Shishir, F. Chen, J. Xia, N. Tao, and D. Ferry, “Room temperature carrier transport in graphene,” J. Comput. Electr., vol. 8, no. 2, pp. 43–50, 2009.
    [84] P. Joshi, H. E. Romero, A. T. Neal, V. K. Toutam, and S. A. Tadigadapa, “Intrinsic doping and gate hysteresis in graphene field effect devices fabricated on SiO2 substrates,” J. Phys.: Condens. Matter, vol. 22, no. 33, p. 334214, 2010.
    [85] Z.-M. Liao, B.-H. Han, Y.-B. Zhou, and D.-P. Yu, “Hysteresis reversion in graphene field-effect transistors,” J. Chem. Phys, vol. 133, no. 4, p. 044703, 2010.
    [86] D. Wang, X. Liu, L. He, Y. Yin, D. Wu, and J. Shi, “Manipulating graphene mobility and charge neutral point with ligand-bound nanoparticles as charge reservoir,” Nano
    Lett., vol. 10, no. 12, pp. 4989–4993, 2010.
    [87] Y. Zheng, G.-X. Ni, C.-T. Toh, M.-G. Zeng, S.-T. Chen, K. Yao, and B. Özyilmaz, “Gate-controlled nonvolatile graphene-ferroelectric memory,” Appl. Phys. Lett.,
    vol. 94, no. 16, p. 163505, 2009.
    [88] H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, “Hysteresis of electronic transport in graphene transistors,” ACS Nano, vol. 4, no. 12, pp. 7221–7228, 2010.
    [89] T. Ando, A. B. Fowler, and F. Stern, “Electronic properties of two-dimensional systems,” Rev. Mod. Phys., vol. 54, pp. 437–672, 1982.
    [90] K. I. Bolotin, K. J. Sikes, J. Hone, H. L. Stormer, and P. Kim, “Temperature dependent transport in suspended graphene,” Phys. Rev. Lett., vol. 101, p. 096802,
    2008.
    [91] K. Nagashio, T. Yamashita, T. Nishimura, K. Kita, and A. Toriumi, “Electrical transport properties of graphene on sio2 with specific surface structures,” J. Appl. Phys., vol. 110, no. 2, p. 024513, 2011.
    [92] H. Sugimura, Self-Assembled Monolayers on Si, Chapter 3 in ”Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications ”, p.59. Elsevier, 2006.
    [93] W. H. Lee, J. Park, Y. Kim, K. S. Kim, B. H. Hong, and K. Cho, “Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers,” Adv.
    Mater., vol. 23, no. 30, pp. 3460–3464, 2011.
    [94] L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu, L. M. Peng, X. Bao, and H.-M. Cheng, “Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum,” Nat Commun, vol. 3, p. 699, 2012.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE