簡易檢索 / 詳目顯示

研究生: 林緯琦
Wei-Chi Lin
論文名稱: 電流垂直膜面型垂直式磁性多層膜巨磁阻及其製程之研究
CPP-GMR multilayer with perpendicular anisotropy and its patterning process
指導教授: 賴志煌
Chih-Huang Lai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 73
中文關鍵詞: 巨磁阻垂直式電流水平膜面型電流垂直膜面型交互作用力
外文關鍵詞: GMR, perpendicular, CIP, CPP, interlayer coupling
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗中,我們已可控制稀土-過渡金屬元素TbFeCo之成分與垂直異向性,並以此磁性材料製作電流水平膜面型垂直式巨磁阻(CIP-pGMR)磁性多層膜,且其磁阻變化率可高達4.1%。然而藉由磁光柯爾效應的量測可知,垂直巨磁阻多層膜之層間靜磁能耦合作用將影響自由層磁矩之翻轉特性,並使多層膜磁矩方向傾向靜磁能最低能量態。然而隨著間隔層Cu厚度逐漸增加,此交互作用力雖然大幅降低,但由於電流在水平膜面間流動時有電流分流效應的因素,磁阻變化率會隨之下降,此外多層膜之電阻值亦隨之降低。理想的間隔層厚度為2nm,此時巨磁阻多層膜之層間靜磁能耦合作用趨近於零,且磁阻變化率仍保持3.25%。
    在製備電流垂直膜面型垂直式巨磁阻(CPP-pGMR)之磁性多層膜之前,我們首先選用了AlSiCu作為電極材料,並以AlSiCu/Cu多層膜之結構,解決了表面粗糙度的問題。爾後將巨磁阻磁性多層膜鍍製於其上,藉由磁性質的量測可知,TbFeCo/Co90Fe10複合磁性層之垂直異向性與成分並不會因下電極的影響而有所改變。
    在元件的製程中,我們設計了三種製備方式,第一種已經製備完成,但可惜的是在最後量測時,發生因Au與Si基板附著力太差而無法打線量測的問題。然而第二種及第三種製程,雖然我們已有不錯的微影技術,但卻發現顯影液(四甲基胺水)會與AlSiCu反應,導致下層TbFeCo的顯露,並有可能引發氧化或是腐蝕的問題。因此為降低蝕刻製程的複雜性而以AlSiCu作為保護層是不可行的,必須改以其他較穩定且不易氧化的材料來取代。


    第一章 前言………………...…..………….…………………1 第二章 文獻回顧…………………………….……………….2 2.1 磁阻現象簡介………………..……………………………….……..2 2.1.1 巨磁阻效應 (GMR effect)…………….………………………….2 2.1.2 差異性自旋散射 (Differential Scattering )……...………………..3 2.1.3 CIP巨磁阻與CPP巨磁阻 (CIP GMR and CPP GMR)………….4 2.2 稀土-過渡金屬合金…………………..…………………………….8 2.2.1 稀土-過渡金屬合金簡介 (RE-TM alloy)….……………………..8 2.2.2 稀土-過渡金屬合金之成分對磁化量與矯頑場之關係………...10 2.2.3 典型稀土-過渡金屬合金之磁性質與溫度關係………………...12 2.2.4 稀土-過渡金屬合金之垂直異向性……………………………...13 2.2.5 稀土-過渡金屬合金之磁光柯爾效應…………………………...16 2.3 微影技術………………………………………………..…………18 2.3.1 微影技術簡介……………………………………………………18 2.3.2 阻劑 (Resist)…………………………………………………….18 2.3.3 軟烤 (Soft Bake)……………………….………………………..20 2.3.4 微影 (Lithography)…………………..………………………….20 2.3.5 顯影 (Develop)………………………………………………….22 2.3.6 定影………………………………………………………………23 2.3.7 硬烤 (Hard Bake)…………………………..……………………23 2.4 蝕刻原理與技術…………………………..………………………24 2.4.1 蝕刻簡介…………………………………………………………24 2.4.2 乾蝕刻……………………………………………………………24 第三章 實驗方法與分析儀器…………….………….……..26 3.1 實驗流程…….…………………………………..…………………26 3.2 樣品製備…………………………………….…………..…………27 3.2.1 濺鍍系統…………………………………………………………27 3.2.1.1 濺鍍原理……………………………………………………….27 3.2.1.2 超高真空六槍磁控濺鍍系統………………………………….28 3.2.1.3 過渡-稀土金屬合金薄膜之製備………………………………30 3.2.2 微影製程設備系統………………………………………………30 3.2.2.1 光阻旋塗機 (spin coater)……….……………………………..30 3.2.2.2 電子束微影系統 (E-Beam Lithography System)……………..31 3.2.3 蝕刻系統…………………………………………………………31 3.3 分析儀器……………………………..……….……………………34 3.3.1 原子力顯微鏡 (AFM)………………….………………………..34 3.3.2 磁光柯爾效應分析儀 (MOKE)……………….………………...34 3.3.3 震盪樣品磁測儀 (VSM)………………………………………...37 3.3.4 四點探針量測 (4-point probe measurement)…………………....38 3.3.5 掃瞄式電子顯微鏡 (SEM)……………………………………...39 第四章 實驗結果與討論…………………………….……….......40 4.1 TbFeCo/CoFe/Cu/CoFe/TbFeCo磁性多層膜之電流水平膜面型垂直式巨磁阻現象 (CIP-pGMR)………………………………...40 4.1.1 垂直巨磁阻效應…………………………………………………40 4.1.2 Cu厚度對磁性與電性質影響……………………..……………..44 4.2 TbFeCo/CoFe/Cu/CoFe/TbFeCo磁性多層膜之電流垂直膜面型垂直式巨磁阻薄膜製備 (CPP-pGMR)………………....…………..47 4.2.1 下電極(AlSiCu)之性質………………………………………….48 4.2.2 CPP-pGMR之磁性質…………………...………………………..50 4.3 製備電流垂直膜面型垂直式巨磁阻之微影與蝕刻製程…...……51 4.3.1 Type I………………….…………………………………………..51 4.3.2 Type II………………….………………………………………….59 4.3.3 Type III…………………………………………………………...63 第五章 結論…………………………….…………………...68 參考文獻………………………………………….…………...70

    [1] M. N. Baibich et al, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices” Phys. Rev. Lett. 61, 2472 (1988)
    [2] R. Coehoorn, “Period of oscillatory exchange interactions in Co/Cu and Fe/Cu multilayer systems” Phys. Rev. B 44, 9331 (1991)
    [3] P. Bruno et al, “Oscillatory coupling between ferromagnetic layers separated by a nonmagnetic metal spacer” Phys. Rev. Lett. 67, 1602 (1991)
    [4] A. Fert and I. A. Campbell, J. Phys. F: Metal Phys. 6, 849 (1976)
    [5] W. P. Pratt et al, “Perpendicular giant magnetoresistances of Ag/Co multilayers” Phys. Rev. Lett. 66, 3060 (1991)
    [6] Hideaki Fukuzawa et al, “Large magnetoresistance ratio of 10% by Fe50Co50 layers for current-confined-path current perpendicular to plane giant magnetoresistance spin-valve films” Appl. Phys. Lett. 87, 082507 (2005)
    [7] Xilin Peng et al, “Current-induced hysteretic switching and reversible transition of magnetization in spin-valve structures with current constraint paths in spacer layers” Phys. Rev. B 72, 052403 (2005)
    [8] Chunghee Nam et al, “Enhancement of magnetoresistance with low interlayer coupling by insertion of a nano-oxide layer into a free magnetic layer” J. Appl. Phys. 97, 10C510 (2005)
    [9] N. Nishimura et al, “Magnetic tunnel junction device with perpendicular magnetization films for high-density magnetic random access memory” J. Appl. Phys. 91, 5246 (2002)
    [10] S. Mangin et al, “Current-inducedmagnetization reversal in nanopillars with perpendicular anisotropy” Nature Materials 5, 210 (2006)
    [11] Hao Meng et al, “Spin transfer in nanomagnetic devices with perpendicular anisotropy” Appl. Phys. Lett. 88, 172506 (2006)
    [12] T.Seki et al, “Spin-polarized current-induced magnetization reversal in perpendicularly magnetized L10-FePt layers” Appl. Phys. Lett. 88, 172504 (2006)
    [13] E. P. Wohlfarth, J. Phys. F, 9, L123 (1979)
    [14] R. L. Comstock ” Introduction to magnetism and magnetic recording “ Wiley-Interscience, John Wiley & Sons Inc. pp 75-76 (1999) (ISBN 0-471-31714-4)
    [15] F. A. Doljck and R. W. Hoffman, Thin Solid Film 12, 71,(1972)
    [16] Y. Suzuki et al, “Bond-orientational anisotropy in metallic glasses observed by x-ray diffraction” Phys. Rev. B 35, 2162 (1987)
    [17] G. S. Cargill et al,“Dipolar mechanisms for magnetic anisotropy in amorphous ferrimagnetic alloys” J. Appl. Phys. 49, 1753 (1978)
    [18] L. Nẽel, J. Phys. Radium 15, 225 (1954)
    [19] T. Egami et al, ” Anisotropy and coercivity of amorphous RE-TM films” IEEE. Trans. Magn. Mag. 23, 2269 (1987)
    [20] Y. Suzuki et al, “Single ion model for perpendicular magnetic anisotropy in RE-TM amorphous films” IEEE Trans. Magn. Mag. 23, 2275 (1987)
    [21] M.S.S. Brooks, L. Nordstroem, and B. Johanaaon, Physica B: Condensed Matter. 177, P.95 (1991)
    [22] M. Chikazumi, “Physics of magnetism”, New York: John Wiley,1964
    [23] S. Tsunashima et al, “Magnetoelastic contribution to perpendicular anisotropy in amorphous Gd-Co and Gd-Fe films” IEEE Trans. Magn. Mag. 14, 844 (1978)
    [24] “Introduction to magnetic materials” B. D. Cullity (1972)
    [25] Shih-Cheng N. Cheng et al. “Separation of perpendicular anisotropy components in dc-magnetron sputtered TbFe amorphous films” J. Appl. Phys. 69, 7202 (1991)
    [26] Hong Fu et al, “Generic source of perpendicular anisotropy in amorphous rare-earth–transition-metal films” Phys. Rev. Lett. 66, 1086 (1991)
    [27] 龍文安 “半導體微影技術”
    [28] “Introduction to Semiconductor Manufacturing Technology” Hong Xiao
    [29] Byul Shin et al, “Etch characteristics of CoZrNb and CoTb magnetic thin films in a high density plasma” Phys. Stat.sol. (a) 201, 1644 (2004)
    [30] “Semiconductor Material and Device Characterization” Dieter K. Schroder, Wiley, pp1-9, 1990

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE