簡易檢索 / 詳目顯示

研究生: 周沛瑜
Chou, Pei-Yu
論文名稱: The study of the Stability of Pd/PVP Nanoparticles added with Phosphoric Acid and the Activity to Electroless Cu Deposition
磷酸對奈米鈀粒子穩定性及其在無電鍍銅沉積催化活性之研究
指導教授: 萬其超
Wan, Chi-Chao
王詠雲
Wang, Yung-Yun
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 99
中文關鍵詞: 奈米鈀PVP磷酸無電鍍沉積
外文關鍵詞: Palladium nanoparticles, PVP, Phosphoric acid, Electroless deposition
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Palladium nanoparticles were synthesized simply by reducing Pd ions which were attracted to electron nitrogen atom in poly(N-vinyl-2-pyrrolidone) (PVP). This Pd/PVP aqueous system was developed as the activator for electroless copper deposition. Compared with commercial Pd/Sn colloid that was easily oxidized by dissolved oxygen and agglomerated in the solution, Pd/PVP activator was stable without any Pd aggregation for a long time. Pd/PVP activator showed high catalytic activity as Pd/Sn colloid on flat FR-4 substrate (glass fiber reinforced epoxy). From back-light test for printedthrough-hole (PTH) process, we found that micro-etching process would reduce catalytic activity of Pd/PVP activator and voids in PTH occurred
    especially on glass fiber. Adding phosphoric acid to Pd/PVP activator could improve back-light performance, but Pd nanoparticles precipitated in a few days.
    In this study, we found that H3PO4 molecule was the cause of Pd agglomeration by forming hydrogen bond with PVP. Pd nanoparticles would precipitate if the concentration of H3PO4 were high in the solution. IR spectra
    and UV-vis spectra proved that Pd/PVP activator would react with H3PO4 molecules to form a complex by hydrogen bond, and DLS analysis also showed that Pd/PVP/H3PO4 nanoparticles formed a larger hydrolysis cluster than
    Pd/PVP nanoparticles. TEM images gave the information about particle size and shape of Pd nanoparticles, and more information about dispersion and distance of Pd nanoparticles and Pd clusters could be obtained by the model
    fitting of SAXS data. The results showed that Pd/PVP/H3PO4 nanoparticles formed a looser structure than Pd/PVP nanoparticles, and H2PO4 anion would result in PVP to twist Pd nanoparticles tightly, which reduced the catalytic
    activity of Pd/PVP/H2PO4 nanoparticles for copper deposition. SEM images showed that micro etching made the surface of glass fiber rough, and more Pd nanoparticles could be adsorbed in the holes. However, catalytic activity for Cu deposition was low because outer Pd nanoparticles shielded active surface of inner Pd nanoparticles. Since there is higher Cu deposition on epoxy when we use Pd/PVP/H3PO4 nanoparticles as activator, in PTH process, Cu deposition on glass fiber is improved by Cu deposition on epoxy nearby. So back-light performance become acceptable for PCBs industry.


    本論文主要探討磷酸對於鈀奈米粒子穩定性及在對無電鍍銅沈積催化活性的影響。在高分子PVP作為保護劑下,鈀離子經由甲醛還原成鈀奈米粒子,可作為無電鍍銅沈積製程之催化銅還原活化劑。不同於商業化所使用的錫鈀膠體,二價錫離子容易被溶氧而氧化使得鈀粒子沈澱,此高分子型奈米鈀具有更好的穩定性,在FR-4基板上亦有很高的催化活性,但是鍍通孔實驗結果發現通孔內鍍銅效果不佳,在玻纖處出現孔破缺陷。添加磷酸於奈米鈀活化劑中可以改善鍍通孔的效果,但是卻造成鈀粒子聚集沈澱。
    在本論文中,我們發現磷酸分子是造成奈米鈀活化液不穩定的原
    因。當溶液中磷酸濃度過高時會導致奈米鈀聚集。由IR和UV光譜圖發現磷酸分子會與PVP高分子產生氫鍵而形成錯合物,DLS結果亦顯示了加入磷酸後的奈米鈀與PVP形成較大的水合團簇。TEM圖提供了奈米鈀粒子顆粒大小與分散情形,利用模型分析SAXS結果得知奈米鈀粒子間與團簇間的距離和分散情形。結果顯示磷酸使得高分子奈米鈀結構更為鬆散,而磷酸二氫根陰離子造成PVP更緊密的纏繞於奈米鈀,進而降低了奈米鈀的催化活性。從SEM圖發現微蝕製程會造成玻璃纖維表面粗糙化,粗糙的表面可以吸附較多的奈米鈀,但是外層的奈米鈀會遮蔽內層奈米鈀的催化活性,使得玻纖布上無電鍍銅結果不佳。加入磷酸後的奈米鈀粒子在環氧樹脂上可以催化較多的無電鍍銅量,也因此在鍍通孔實驗中,即使玻纖處的無電鍍銅效果不佳,但可以憑藉環氧樹脂提高玻纖處的無電鍍銅反應,使得背光結果可以達到工業要求。

    Abstract I 摘要 III Table of Contents IV List of Figures VII List of Tables XI Chapter 1. Introduction 1 Chapter 2. Literature Review 3 2.1 The Properties and Application of PVP 3 2.1.1 The Influence of Salts on PVP 3 2.1.2 The Influence of Phosphoric Acid on Polymers 7 2.2 The Protection of PVP on Nanoparticles 8 2.2.1 Pt/PVP Nanoparticles 8 2.2.2 Ag/PVP Nanoparticles 11 2.3 Electroless Copper Deposition 14 2.3.1 Pd/Sn Colloid 14 2.3.2 Pd Ion 15 2.3.3 Pd-based Activator 15 2.4 Pd-based Activator Developed in Our Laboratory 15 2.4.1 Palladium Reduction via Reactive Micelle as Template 16 2.4.2 Synthesis Palladium Particles via PVP 21 2.4.3 Synthesis Bimetallic Palladium Particles via PVP 23 2.4.3.1 Ag/Pd Bimetallic Nanoparticles 23 2.4.3.2 Cu/Pd Bimetallic Nanoparticles 26 2.4.4 The contrast of Pd-based Activator 29 2.4.5 Mechanism of Electroless Copper Deposition 31 2.5 Motivation 33 V Chapter 3. Experimental Sections 36 3.1 Materials 36 3.2 Experimental Instrument 37 3.3 Principle and Measurement of Analytical Methods 37 3.3.1 Ultraviolet-Visible Absorption Spectrometry 37 3.3.2 Inductively Coupled Plasma Mass Spectrometry 38 3.3.3 Small-angle X-ray Scattering 40 3.3.4 Transmission Electron Microscopy 42 3.3.5 Fourier Transform Infrared Spectroscopy 43 3.3.6 Scanning Electron Microscope 44 3.3.7 Dynamic light scattering 45 3.4 Preparation of Nanoparticles 45 3.5 Electroless Copper Deposition on FR-4 substrate 47 3.6 Electroless Copper Deposition on Glass Fiber Cloth 48 3.7 Pd/PVP Activators Added with Acids 50 3.8 Pd/PVP Activators Added with Salts 50 3.9 The Judgment for the Back-light Performance 51 Chapter 4. Results and Discussions 53 4.1 Properties of Pd/PVP activator 53 4.1.1 Stability of Pd/PVP Activator Added with Different Acids 53 4.1.2 Pd/PVP Activators Added with Phosphate Sodium Salts 56 4.1.3 Observation of PVP Aqua Added with H3PO4 and NaaHbPO4 58 4.1.4 DLS Analysis 61 4.1.5 FTIR Spectra Analysis 63 4.1.6 The UV-vis Spectra Analysis 68 4.1.7 TEM Images of Pd/PVP nanoparticles 70 4.1.8 SAXS Analysis 72 4.1.9 Conclusion 76 4.2 Activity of Pd/PVP nanoparticles for Electroless Copper 78 4.2.1 Pd/PVP nanoparticles for Electroless Copper on FR-4 Substrate 78 4.2.2 Back-light Performance Analysis 81 VI 4.2.3 Pd/PVP nanoparticles for Electroless Copper on Glass Fiber 82 4.2.4 SEM images of Glass Fiber 87 4.2.5 Conclusion 90 Chapter 5. Conclusion 94 References 96

    1. O. Mallory and J.B. Hajdu, Electroless plating: Fundamentals and Applications, American Electroplaters and Surface Finishers Society, Orlando, Ch. 12 (1990).
    2. E. J. M. O’Sullivan, J. Horkans, J. R. White and J. M. Roldan, IBM J. Res. Develop., 32, 5 (1990).
    3. M. Paunovic and M. Schlesinger, Fundamentals of Eletrochemical Deposition, John Wiley & Sons, Inc., New York, Ch. 8 (1998).
    4. C. L. Lee, Y.Y. Wang and C.C. Wan, J. Electrochem. Soc., 150, C125 (2003).
    5. 彭超, 碩士論文, 國立清華大學, 中華民國台灣 (2006).
    6. J.L. Lan, C.C. Wan and Y.Y. Wang, J. Of The Electrochmical SOCIETY. 155, 4 (2008).
    7. BASF, Deutsches Reichspatent 757 355 (1944).
    8. W. Reppe, “Polyvinylpyrrolidon” Verlag Chemie, Weinheim (1954).
    9. F. Haaf, A. Sanner and F. Straub, Polymer J., 17, 1 (1985).
    10. Verall, R. E. in 'Water: A Comprehensive Treatise' (Ed. F. Franks), 3, Plenum (1975).
    11. U.U. Salamova, Z.M. Rzaev, S. Altindal and A.A. Masimov, Polymer, 37, 2415-2421 (1996).
    12. Z. Zhang, B. Zhao and L. Hu, J. Solid. State Chem., 121: 105 (1996).
    13. A. Güner, J. of Applied Polymer Science, 75, 1434–1439 (2000).
    14. A. Dan, S. Ghosh and S.P. Moulik, J. Phys. Chem. B, 112, 3617-3624 (2008).
    15. H. Hirai, N. Yakura, Y. Seta and S. Hodoshima, React. Funct. Polym., 37, 121 (1988).
    16. J.M. Lin, T.L. Lin, U.S. Jeng, Y.J. Zhong, C.T. Yen, andT.Y. Chen, J. Appl. Cryst. 40, 540 (2007).
    17. Sheu, E. Y. Phys. Rev. A, 45, 2428-2437 (1992).
    18. Z. Zhang, B Zhao and L. Hu, Journal of Solid State Chemistry, 121, Reference 97 105-110 (1996).
    19. H. S. Wang, X. L. Qiao, J. G. Chena, X. J. Wang and S. Y. Ding, Materials Chemistry and Physics, 94, 449–453 (2005).
    20. P. Christophe, L. Patricia and P. Marie-Paule, J. Phys. Chem., 97 12974 (1993).
    21. L. Guoping, L. Yunjun, Y. Weishang, Z. Liang and T. Huimin, Chemical Journal on Internet, 7, 1 (2005).
    22. 莊達人,“錫鈀膠體(II)“, 電路板資訊, 57, 46 (1993).
    23. Takagi et al., U. S. Patent No. 6, 156,385 (2000).
    24. G. Schmid and L. F. Chi, Adv. Mater., 10, 515 (1998).
    25. T. Yonezawa, K. Imamura and N. Kimizuka, Langmuir, 17, 4701 (2001).
    26. D. E. Cliffel, F. P. Zamborini, S. M. Gross and R. W. Murray, Langmuir, 16, 9699 (2000).
    27. I. Quiros, M. Yamada, K. Kubo, J. Mizutani, M. Kurihara and H. Nishihara, Langmuir, 18, 1413 (2002).
    28. L. Lu, H. Wang, S. Xi and H. Zhang, J. Mater. Chem., 12, 156 (2002).
    29. H. P. Choo, K. Y. Liew and H. Liu, J. Mater. Chem., 12, 934 (2002). 30. T. Teranishi and M. Miyake, Chem. Mater., 10, 594 (1998).
    31. H. Hirai, N. Yakura, Y. Seta and S. Hodoshima, React. Funct. Polym., 37, 121 (1998).
    32. A. Taleb, C. Petit and M. P. Pileni, Chem. Mater., 9, 950 (1997). 33. A. Badia, W. Gao, S. Singh, L. Demers, L. Cuccia and L. Reven, Langmuir, 12, 1262 (1996).
    34. K. Naka, M. Yaguchi and Y. Chujo, Chem. Mater, 11, 849 (1999).
    35. C. C. Lee, C. C. Wan and Y. Y. Wang, Adv. Funct. Mater, 11, 344 (2000).
    36. 陳麗蓉, 碩士論文, 國立清華大學, 中華民國台灣 (2004).
    37. M. Paunovic, Modern Electroplating, 4th ed., The Electrochemical Society, New Jersey, p.645 (2000).
    38. A. Newman, ”Elements of ICP-MS”, Analytical Chemistry News & Reference 98 Features, 46-51 (1996)
    39. H. Matsuoka, K. Kakigami, N. Ise, Y. Kobayashi, Y. Machitani, T. KIKUCHIf, T. Kato, Proc. Natl. Acad. Sci., 88, 6618-6619 (1991)
    40. O. Glatter and O. Kratky, “Small-angle X-ray Scattering” Academic Press, (1982)
    41. D. I. Svergun and M. H .J. Koch, Rep. Prog. Phys., 66, 1735-1782 (2003).
    42. L. A. Feigin and D. I. Svergun, “Structure Analysis by Small-Angle XRay and Neutron Scattering”, New York: Plenum Press (1987)
    43. "Palladium”, Los Alamos National Laboratory.
    44. “Online Encyclopedia”, E-databases of 1911 Encyclopedia Britannica
    45. S. Bialkowski, “Use of Acid/Base Distributions in pH Problems”, Utah State University (2004).
    46. 楊嘉誠, 博士論文, 國立清華大學, 中華民國台灣 (2005).
    47. 藍若琳, 碩士論文, 國立清華大學, 中華民國台灣 (2007).
    48. W. L. Wang, C. C. Wan, Y. Y. Wang, C. L. Lee, Colloids Surface A. 275, 11-16 (2006)
    49. C. C. Yang, C. C. Wan, Y. Y. Wang, J. Colloid Interf. Sci., 279, 433-439 (2004)
    50. Y. M. Chung, H. Rhee, J. Colloid Interface Sci., 271, 131 (2004)
    51. 羅曉筠, 博士論文, 國立清華大學, 中華民國台灣 (2008).
    52. R. Tanaka, H. Yamamoto, S. kawamura, T. Iwase, Electrochim. Acta, 40, 2421 (1995)
    53. M. F. Daniel, B. Desbat, F. Creuge, O. Trinquet, J.C. Lassegues, Solid State Ionics, 637, 28–30 (1988)
    54. J. S. Wainright, J. T. Wang, D. Weng, R. F. Savinell, M. Litt, J. Electrochem. Soc., 142, L121, (1995)
    55. J. S. Wainright, J. T. Wang, R. F. Savinell, M. Litt, H. Moaddeland C. Rogers, in Electrode Materials and Processes for Energy Conversion and Storage, ed. S. Srinivasan, D. D. Macdonald and A. C. Khandkar,
    Reference 99 PV 94±23, p. 255, The Electrochemical Society Proceedings Series, Pennington, NJ, (1995)
    56. X. Glipa, B. Bonnet, B. Mula, D. J. Jones, J. Roziere, J. Mater. Chem., 9, 3045-3049 (1999)
    57. A. Sezgin, U. Akbey, M. R. Hansen, R. Graf, A. Bozkurt, Baykal,
    Polymer, 49 3859–3864 (2008)
    58. The Transmission Electron Microscope, Nobelprize.org

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE