簡易檢索 / 詳目顯示

研究生: 邱冠勳
Kuan-Hsun Chiu
論文名稱: 氮化鋁薄膜型體聲波元件之設計與製作
Design and fabrication of aluminum nitride thin film bulk acoustic wave devices
指導教授: 黃瑞星
Ruey-Shing Huang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 168
中文關鍵詞: 濾波器體聲波共振器雙工器氮化鋁溫度感測器壓力感測器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜體聲波元件製作的高頻帶通濾波器、雙工器及感測器已經證實具有可積體化的能力。本論文將針對薄膜體聲波元件的設計分析、模擬與製作做一完整的敘述。

    本論文中的體聲波元件是以具C軸指向性的氮化鋁薄膜當作壓電材料層。此氮化鋁薄膜是以反應式濺鍍技術沈積在白金基底上。本論文研究幾個關鍵濺鍍製程參數對沈積的氮化鋁薄膜C軸指向性造成的影響,以尋求最佳化的濺鍍沈積參數沈積出具有高C軸指向性的氮化鋁薄膜,其C軸半高寬值為2.7°。

    本論文利用微積電製程與乾蝕刻技術成功研發出製作薄膜型體聲波共振器的製程。此製程具備良率高及成本低的優點,且與半導體製程相容性高。利用此製程製作的薄膜型體聲波共振器具有高共振頻率(例如串振頻率為1974百萬赫茲)、高機電偶合係數(約6.1%)及高品質因子(大於974)的特性。此共振器將用來製作高頻帶通濾波器、雙工器、壓力感測器及溫度感測器。

    在元件設計方面,本研究使用Mason模型及Butterworth Van-Dyke(BVD)等效電路來分析、模擬及設計體聲波共振器元件,也利用高頻量測對每個元件進行特性的量測來驗證設計的準確性。

    本研究所研製的高頻帶通濾波器。此濾撥器的通帶頻寬為60百萬赫茲,範圍介於1850至1910百萬赫茲;其通帶損耗小於2分貝其非通道阻抗大於25分貝。量測結果顯示濾波器的頻率響應特性和模擬結果非常吻合。

    本研究也研製一個雙工器。此雙工器的傳送通帶範圍在1850至1910百萬赫茲且其接收端通帶範圍在1930至1990百萬赫茲;其傳送通帶損耗與接收通道損耗分別小於5.5分貝及6分貝;其傳送非通道阻抗與接收非通道阻抗分別大於35分貝及30分貝。

    本研究也利用體聲波元件製作一個具有偵測壓力及溫度雙功能的感測器。其量測結果顯示此感測器在量測範圍內具有高靈敏度及高線性度。此感測器的熱敏感度為25.02 ppm/℃(溫度範圍介於攝氏10度至80度之間);經過熱循環測試,此感測器沒有熱遲滯現象。此感測器的壓力敏感度為336.2 ppm/bar(相對大氣壓力範圍介於0至2.07巴之間);經過壓力循環測試,此感測器也沒有壓力遲滯現象。


    Film bulk acoustic wave devices show considerable promise as an integrated solution for RF bandpass filter, duplexer and sensor. This thesis is devoted to the analysis, design, and fabrication of film bulk acoustic wave devices, which are targeted for RF front-end in communication devices and sensors.

    The film bulk acoustic wave device uses c-axis oriented aluminum nitride (AlN) thin film as its piezoelectric layer. Comprehensive studies on the relationships between the key deposition process parameters and the properties of sputter deposited c-axis oriented AlN thin films are presented. These AlN films were deposited on Pt electrode by reactive magnetron sputtering under various deposition conditions. A polycrystalline AlN film with highly c axis-preferred orientation was achieved. The XRD rocking curve shows a narrow peak measured was 2.7°.

    This thesis also covers the description of the studies on developed a dry backside silicon etching process to fabricate a number of devices including a membrane type film bulk acoustic wave resonator (FBAR), a ladder type bandpass filter, a FBAR duplexer and FBAR based sensors. The membrane type thin film FBAR was fabricated by high aspect ratio silicon etching process. The quality factor of this FBAR is estimated to be 974 and the electromechanical coupling constant is 0.063. The resonance and anti-resonance frequencies are 1.888 GHz and 1.940 GHz, respectively. This FBAR is a high Q device and is suitable for making a ladder type filter.

    A ladder type bandpass FBAR filter was fabricated based on our membrane type FBAR. This thesis also developed a 1.9 GHz RF transmitter (Tx) filter. This FBAR based filter has potential of simple process to achieve high yield and hence low cost. The measured in-band insertion loss, return loss and the broadband rejection of the Tx filter were 2 dB, 9 dB and 25 dB, respectively. The filter has band pass of 60 MHz bandwidth from 1850 to 1910 MHz. A duplexer was also fabricated based on our FBAR technology. The duplexer has transmitted and received band pass of 60 MHz bandwidth from 1850 to 1910 MHz and 1930 to 1990 MHz, respectively.

    A FBAR-based sensor for the simultaneous measurement of temperature and pressure with high sensitivity was fabricated and characterized. Temperature or pressure sensing is determined by the change in the series resonant frequency of the FBAR device when exposed to a measurement environment. For temperature sensing, measurement results show a sensitivity of 25.02 ppm/℃, a nonlinearity less than ±0.005 % over the measurement range of 10 to 80 ℃, and a hysteresis within ±0.005 % in one temperature cycle. In pressure sensing, measured results show a sensitivity of 336.2 ppm/bar, a nonlinearity less than ±0.004 % over the measurement pressure range of 0 to 2.07 bar, and a hysteresis within ±0.007 % in one pressure cycle.

    Abstract I 中文摘要 III 致謝辭 V 目錄 VII 圖目錄 XIV 表目錄 XXVI 1. 導論:研究動機及論文主題 1 1.1. 研究動機 1 1.2. 論文主題 4 2. 文獻回顧 6 2.1. 薄膜型體聲波共振器 6 2.1.1. 體聲波共振器與表面聲波共振器 6 2.1.2. 壓電薄膜 13 2.1.3. 氮化鋁 15 2.1.4. 縱向驅動縱向式薄膜型體聲波共振器 20 2.2. 高頻帶通濾波器及雙工器 23 2.2.1. 高頻微機電市場 23 2.2.2. 無線通訊市場 25 2.2.3. 前端傳接器 29 2.2.4. 雙工器 30 2.2.5. 帶通濾波器 32 2.3. 壓力及溫度雙功能感測器 34 2.3.1. 聲波感測器 34 2.3.2. 壓力及溫度雙功能聲波感測器 35 3. 反應性射頻磁控濺鍍沈積氮化鋁薄膜的研究 36 3.1. 本章摘要 36 3.2. 研究動機 36 3.3. 反應性射頻磁控濺鍍原理 37 3.3.1. 濺鍍原理 37 3.3.2. 射頻濺鍍原理 38 3.3.3. 磁控濺鍍原理 41 3.3.4. 反應性濺鍍法 42 3.4. 實驗方法與量測 43 3.4.1. 實驗設置 43 3.4.2. 鍍膜製程流程 44 3.4.3. X光繞射分析 46 3.4.4. 場發射掃瞄式電子顯微鏡 51 3.4.5. 原子力顯微鏡 53 3.4.6. 表面輪廓儀 53 3.5. 實驗結果與討論 54 3.5.1. 濺鍍功率的影響 54 3.5.2. 氮氣濃度的影響 55 3.5.3. 濺鍍溫度的影響 57 3.5.4. 濺鍍壓力的影響 60 3.5.5. 靶材與晶片濺鍍距離的影響 61 3.5.6. 基底白金薄膜表面輪廓的影響 62 3.5.7. 製程參數影響的總結 65 3.5.8. 最佳鍍膜參數及其鍍膜結果 65 3.6. 結論 68 4. 薄膜型體聲波共振器 69 4.1. 本章摘要 69 4.2. 研究動機 69 4.3. 聲波波動方程式 70 4.3.1. 非壓電彈性體的一維波動方程式 70 4.3.2. 非壓電等向彈性體的虎克定律 72 4.3.3. 非壓電非等向彈性體的三維波動方程式 73 4.3.4. 非壓電體的Christoffel三維波動方程式 75 4.3.5. 壓電薄膜的Christoffel三維波動方程式 78 4.3.6. 厚度振動模態氮化鋁壓電薄膜 82 4.4. 薄膜型體聲波共振器模擬設計 84 4.4.1. 一維彈性平板之Mason等效電路 85 4.4.2. 一維壓電平板之Mason等效電路 87 4.4.3. 薄膜型體聲波共振器等效電路 91 4.4.4. 薄膜型體聲波共振器的特性阻抗 93 4.5. 薄膜型體聲波共振器的製程 94 4.5.1. 面蝕型薄膜體聲波共振器的製作 95 4.5.2. 背蝕型薄膜體聲波共振器的製作 97 4.6. 實驗結果與討論 99 4.6.1. 模擬氮化鋁膜厚對體聲波共振器的影響 99 4.6.2. 模擬上電極膜厚對體聲波共振器的影響 100 4.6.3. 氮化鋁化學濕蝕刻速率及其深寬比 101 4.6.4. 面蝕型薄膜體聲波共振器的量測結果 103 4.6.5. 背蝕型薄膜體聲波共振器的量測結果 105 4.6.6. 氮化鋁C軸半高寬值對體聲波共振器的影響 107 4.6.7. 氮化鋁均勻度對體聲波共振器串振頻率的影響 108 4.7. 結論 109 5. 高頻帶通濾波器及雙工器 111 5.1. 本章摘要 111 5.2. 研究動機 111 5.3. 帶通濾波器的設計與模擬 114 5.3.1. 帶通濾波器工作原理 114 5.3.2. 帶通濾波器的尺寸設計 116 5.4. 全雙功器的設計與模擬 119 5.4.1. 全雙工器的操作特性 119 5.4.2. 四分之一波長傳輸線結構工作原理 121 5.5. 高頻帶通濾波器及雙工器的製程 127 5.5.1. 高頻帶通濾波器的製程 127 5.5.2. 雙工器的製程 129 5.6. 實驗結果與討論 130 5.6.1. 帶通濾波器的實驗與討論 130 5.6.1.1. 體聲波共振器串振頻率的影響 130 5.6.1.2. 體聲波共振器等效機電耦合係數的影響 133 5.6.1.3. 體聲波共振器品質因子的影響 134 5.6.1.4. 串聯端與並聯端共振器面積比的影響 135 5.6.1.5. 帶通濾波器的量測結果 136 5.6.2. 雙工器的實驗與討論 138 5.6.2.1. Tx及Rx相互間干擾的影響 138 5.6.2.2. 體聲波共振器品質因子的影響 139 5.6.2.3. 體聲波濾波器尺寸的影響 141 5.6.2.4. 打線電感的影響 141 5.6.2.5. 電感電容結構的影響 144 5.6.2.6. 印刷電路板設計的影響 146 5.6.2.7. 雙工器的量測結果 146 5.7. 結論 149 6. 薄膜體聲波元件做為壓力及溫度雙功能感測器 150 6.1. 本章摘要 150 6.2. 研究動機 150 6.3. 體聲波共振器感測器設計原理 151 6.4. 體聲波共振器感測器的製程 152 6.5. 實驗結果與討論 154 6.5.1. 感測器元件在常溫常壓下的Z11阻抗特性 154 6.5.2. 溫度變化對共振器串振頻率的影響 155 6.5.3. 壓力變化對共振器串振頻率的影響 158 6.6. 結論 161 7. 論文總結 162 8. 著作發表 165 8.1. 期刊 165 8.2. 會議報告 165 參考文獻 166

    1. Ballato, Proceedings of IEEE Ultrasonics Symposium, San Antonio, TX, November 3-6, 1996, IEEE, 1996, p. 575.
    2. K. M. Lakin, and J. S. Wang, Ultrasonics Symposium, Boston, MA, November 5-7, 1980, IEEE, 1980, p. 834.
    3. http://eesof.tm.agilent.com/products/ads2005a_tw.html
    4. 黃仕泓及柯正浩,物理雙月刊 廿三卷六期(2004)512。
    5. V. M. Ristic, Principles of Acoustic Devices, Krieger Pub Co, Toronto Ontario, 1983.
    6. http://www.epsontoyocom.co.jp/english/C_support/aboutFilter/Filter_e.htm
    7. F. S. Hickernell, 12th International Conference on Microwaves and Radar, Krakow, Poland, May 20-22, 1998, IEEE, 1998, p. 159.
    8. C. K. Campbell, 1999 International Symposium on Electromagnetic Compatibility, Seattle, WA, August 2-6, 1999, IEEE, 1999, p. 686.
    9. W. P. Mason, Physical acoustics: Vol. 1, Academic Press, NY, 1964.
    10. S.V. Krishnaswamy, J. Rosenbaum, S. Horwitz, C. Vale, and R. A. Moore, Proceedings of IEEE Ultrasonics Symposium, Honolulu, HI, December 4-7, 1990, IEEE, 1990, p. 529.
    11. H. Okano, Y. Takahashi, T. Tanaka, K. Shibata, and S. Nakano, Jpn. J. Appl. Phys. 31 (1992) 3446.
    12. K. H. Chiu, J. H. Chen, H. R. Chen, and R. S. Huang, Thin Solid Films 515 (2007) 4819.
    13. R. S. Naik, J. J. Lutsky, R. Reif, C. G. Sodini, A. Becker, L. Fetter, H. Huggins, R. Miller, J. Pastalan, G. Rittenhouse, and Y. H. Wong, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47 (2000) 292.
    14. C. C. Cheng, Y. C. Chen, H. J. Wang, and W. R. Chen, J. Vac. Sci Technol A 14 (1996) 2238.
    15. P. F. Yen, K. N. Chen, and N. C. Wu, Proceedings of the National Science Council, Republic of China, Part A: Physical Science and Engineering 22 (1998) 225.
    16. E. Dogheche, D. R. miens, A. Boudrioua, and J. C. Loulergue, Applied Physics Letters 74 (1999) 1209.
    17. K. T. McCarron, G. R. Kline, J. T. Martin and K. M. Lakin, Proceedings of IEEE Ultrasonics Symposium, Ames, IA, October 2-5, 1998, IEEE, 1988, p. 673.
    18. A. David, S. Glocker, and S. Ismat, Handbook of thin film process technology, Institute of Physics Pub., UK, 1995.
    19. X. Cao, J. Luo, T. Chen and, K. Chen, 1998 5th International Conference on Solid-State and Integrated Circuit Technology, Beijing, October 21-23, 1998, IEEE, 1998, p. 696
    20. M. A. Doubois and, P. Muralt, Applied Physics Letters 74 (1999) 3032.
    21. C. Caliendo, G. Saggio, P. Verardi, and E. Verona, Proceedings of IEEE Ultrasonics Symposium, Baltimore, MD, October 31- November 3, 1993, IEEE, 1993, p. 249.
    22. J. Y. Kim and, H. M. Cho, Proceedings of IEEE Ultrasonics Symposium, Caesars Tahoe, NV, October 17-20, 1999, IEEE, 1999, p. 39.
    23. X. H. Xu, H. S. Wu, C. J. Zhang, and, Z. H. Jin, Thin Solid Films (2001) 62.
    24. M. Madou, Fundamentals of Microfabrication, CRC Press, Florida, 1997.
    25. http://www.wtc-consult.de/english/home_e.html
    26. http://www-leti.cea.fr/uk/index-uk.htm
    27. http://www.vpec.com.tw/index.php
    28. C. T. Nguyen, Micro Electro Mechanical Systems (1998) 1.
    29. D. Leenaerts, J. Tang, and C. Vaucher, Circuit for RF Transceivers, Kluwer Academic Publishers, Boston, 2001.
    30. http://www.infineon.com/
    31. R. Ruby, P.Bradley, J. D. Larson III and, Y. Oshmyansky, Electronics Letters 35 (1999) 794.
    32. P. D. Bradley, R. Ruby, A. Barfknecht, F. Geefay, C. Han, G. Gan, and Y. Oshmyansky, Proceedings of IEEE Ultrasonics Symposium, Newark, CA, October 8-11, 2002, IEEE, 2002, p. 931.
    33. http://www.agilent.com
    34. H. Scherr, G. Scholl, F. Seifert, and R. Weigel, Proceedings of IEEE Ultrasonics Symposium, San Antonio, TX, November 3-6, 1996, IEEE, 1996, p. 347.
    35. B. Jakoby, H. Eisenschmid, and F. Herrmann, IEEE Sens. J. 2 (2002) 443.
    36. W. J. Fleming, IEEE Sens. J. 1 (2001) 296.
    37. E. Benes, M. Groschl, F. Seifert, and A. Pohl, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 (1998) 1314.
    38. R. Gabl, E. Green, M. Schreiter, H. D. Feucht, H. Zeininger, R. Primig, D. Pitzer, G. Eckstein, W. Wersing; Processings of IEEE Sensors, Sheraton Centre Hotel, Toronto, October 22-24, 2003, IEEE, 2003, p. 1184.
    39. J. D. Sternhagen, C. E. Wold, W. A. Kempf, M. Karlgaard, K. D. Mitzner, R. D. Mileham, and D. W. Galipeau, IEEE Sens. J. 2 (2002) 301.
    40. T. M. Reeder, and D. E. Cullen, Proc. IEEE 64 (1976) 754.
    41. R. S. Naik, R. Reif, J. J. Lutsky, and, C. G. Sodini, J. Electrochem. Soc. 146 (1999) 691.
    42. 莊達仁,VLSI製造技術,高利圖書有限公司,台灣,1998。
    43. S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood, Handbook of Plasma Processing Technology, Noyes Publications, UK, 1990.
    44. D. L. Smith, Thin Film Deposition, McGraw-Hill, NY, 1995.
    45. M. A. Dubois, P. Muralt, and V. Plessky, Proceedings of IEEE Ultrasonics Symposium, Caesars Tahoe, NV, October 17-20, 1999, IEEE, 1999, p. 907.
    46. H. W. Liaw, W. Cronin, and F. S. Hickernell, Proceedings of IEEE Ultrasonics Symposium, Baltimore, MD, October 31- November 3, 1993, IEEE, 1993, p. 267.
    47. 汪建民,材料分析,中國材料學會,新竹市,1987。
    48. Powder Diffraction File, JCPDS-International Centre for Diffraction Data, ICDD, Newtown Square, PA, 1998, Card No. 25-1133.
    49. F. Jones, and J. S. Logan, IBM J. Res. Dev. 34 (1990) 680.
    50. R. R. Clemente, B. Aspar, N. Azema, B. Armas, C. Combescure, J. Durand, and A. Figueras, J. Cryst. Growth 133 (1993) 59.
    51. J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices, Artech House, London, 1988.
    52. G. S. Chiu, J. H. Chen, and R. S. Huang, Processings of 2004 International Electron Devices and Materials Symposia, National Chiao Tung University, Hsinchu, Taiwan, December 20-23, 2004, IEDMS, 2004, 363.
    53. G. S. Chiu, J. M. Lu, S. P. Lee, H. R. Chen, and R. S. Huang, Asia-Pacific Conference of Transducers and Micro-Nano Technology, Marina Mandarin hotel, Singapore, Singapore, June 25-28, 2006, APCOT, 2006, p. 257.
    54. P. B. Chu, J. T. Chen, R. Yeh, G. Lin, J. C. P. Huang, B. A. Warneke and S. J. Pister, 1997 International Conference on Solid-State Sensors and Actuators ( Transducers ’97), Hyatt Regency Hotel, Chicago, June 16-19, 1997, IEEE, 1997 p. 665.
    55. D. Feld, K. Wang, P. Bradley, A. Barfknecht, B. Ly and R. Ruby, Proceedings of IEEE Ultrasonics Symposium, Forum hotel, Munich, October 8-11, 2002, IEEE, 2002 p. 913.
    56. USA patent, US6060818
    57. http://www.LG.com
    58. T. Yokoyama, T. Nishihara, S. Taniguchi, M. Iwaki, Y. Satoh, M. Ueda and, T. Miyashita, Proceedings of IEEE Ultrasonics Symposium, Montreal, Canada, August 24-27, 2004, IEEE, 2004, p.429.
    59. http://www.semiconductors.philips.com
    60. http://www.epcos.com/
    61. M. K. Lakin, IEEE MTT-S International Microwave Symposium Digest, Albuquerque, NM, June 1-5, 1992, IEEE, 1992, p. 149.
    62. http://www.wca.org/event_archives/2005/Agilent_WCA_May2005.pdf

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE