研究生: |
鄭宇容 Cheng, Yu Jung |
---|---|
論文名稱: |
以金屬離子作為均相共催化劑提升赤鐵礦電極分解水效率之研究 Enhanced Water Splitting Efficiency of Hematite Electrodes with Metal Ions via Photoelectrochemical process |
指導教授: |
王竹方
Wang, Chu Fang |
口試委員: |
蔣本基
Chiang, Pen Chi 談駿嵩 Tan, Chung Sung |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | 光電化學 、赤鐵礦 、鈍化 、表面態 |
外文關鍵詞: | Photoelectrochemistry, hematite, passivation, surface states |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面態的鈍化(passivation surface state )可以降低起始光電流電位,利用減緩荷姆霍茲層(Helmholtz layer)費米能階釘化現象(Fermi level pinning effect),抑制載子再結合損失而增加光電流效率。本研究發現溶液中的金屬離子可以作為現地表面態的均相鈍化劑,提高赤鐵礦電極的光電效能,在所研究的金屬離子中,利用鉻離子、亞鐵離子、鈷離子、銅離子以及鋅離子作為現地表面態的均向鈍化劑顯著提升赤鐵礦光電流30 ~ 300 %,但高濃度的鎳離子則導致的赤鐵礦光電極的光電流大幅下降,而錳離子對光電流並沒有明顯的影響。因此,本研究推測,表面態可能與赤鐵礦表面的高親和性吸附位置相關,而表面態透過吸附反應吸附金屬離子因而鈍化,被吸附的金屬離子在赤鐵礦/溶液界面同時誘發蕭特基能障效應(Schottky barrier effect)延伸能帶彎曲,因此顯著提升光電化學效能。此外,表面態鈍化效應也與金屬離子本身的化學特性有高度的相關性。
Surface states passivation is known capable of reducing onset photocurrent potential through reducing Fermi level pinning effect occurring at Helmholtz layer and enhancing photocurrent plateau via suppressing recombination loss at space charge region. In this preliminary study, we noted that solution metal ions could function as in situ homogeneous surface passivation reagents and thus improve photoelectrochemical performance of hematite electrodes. Among examined metal ions, Cr(III), Fe(II), Co(II), Cu(II) and Zn(II) were found to enhance the photocurrent by 30 - 300 % while Ni(II) significantly reduces the PEC performance and Mn(II) has no significant influence. We further hypothesized that these surface states might be high affinity adsorption sites on hematite surfaces. Once they are occupied with solution metal ions, surface states are passivated along with the induced Schottky barrier effect at the hematite/solution interface created by adsorbed metal ions and therefore PEC performance is greatly enhanced.
1. Zandi O, Hamann TW. The potential versus current state of water splitting with hematite. Phys Chem Chem Phys. 2015;17(35):22485-503.
2. Kang D, Kim TW, Kubota SR, Cardiel AC, Cha HG, Choi KS. Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. Chem Rev. 2015;115(23):12839-87.
3. Steier L, Herraiz-Cardona I, Gimenez S, Fabregat-Santiago F, Bisquert J, Tilley SD, et al. Understanding the Role of Underlayers and Overlayers in Thin Film Hematite Photoanodes. Adv Funct Mater. 2014;24(48):7681-8.
4. Du C, Yang XG, Mayer MT, Hoyt H, Xie J, McMahon G, et al. Hematite-Based Water Splitting with Low Turn-On Voltages. Angew Chem Int Edit. 2013;52(48):12692-5.
5. Le Formal F, Tetreault N, Cornuz M, Moehl T, Gratzel M, Sivula K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci. 2011;2(4):737-43.
6. Ahmed MG, Kretschmer IE, Kandiel TA, Ahmed AY, Rashwan FA, Bahnemann DW. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting. Acs Appl Mater Inter. 2015;7(43):24053-62.
7. Deng JJ, Lv XX, Gao J, Pu AW, Li M, Sun XH, et al. Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energ Environ Sci. 2013;6(6):1965-70.
8. Wang T, Chen Y, Chiang C, Hsieh Y, Li P, Wang C. Induced carbon layer on the surface of hematite electrodes with enhanced photoelectrochemical performance via the simple electrodeposition method with citric acid additive. ChemElectroChem. 2016.
9. Zandi O, Hamann TW. Enhanced Water Splitting Efficiency Through Selective Surface State Removal. J Phys Chem Lett. 2014;5(9):1522-6.
10. Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW. Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energ Environ Sci. 2012;5(6):7626-36.
11. Kronawitter CX, Zegkinoglou I, Rogero C, Guo J, Mao SS, Himpsel FJ, et al. On the Interfacial Electronic Structure Origin of Efficiency Enhancement in Hematite Photoanodes. J Phys Chem C. 2012;116(43):22780-5.
12. Klahr B, Gimenez S, Zandi O, Fabregat-Santiago F, Hamann T. Competitive Photoelectrochemical Methanol and Water Oxidation with Hematite Electrodes. Acs Appl Mater Inter. 2015;7(14):7653-60.
13. Environmental Protection Authority Perth WA. Southern Seawater Desalination Project,Water Corporation. 2008;Report 1302.
14. blog Td. 7 Ways to Dispose of Brine Waste. http://desalitechcom/7-ways-to-dispose-of-brine-waste/.
15. Gratzel M. Photoelectrochemical cells. Nature. 2001;414(6861):338-44.
16. Li Y, Zhang JZ. Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev. 2010;4(4):517-28.
17. Lin YJ, Zhou S, Liu XH, Sheehan S, Wang DW. TiO2/TiSi2 Heterostructures for High-Efficiency Photoelectrochemical H2O Splitting. J Am Chem Soc. 2009;131(8):2772-+.
18. Ling YC, Wang GM, Wheeler DA, Zhang JZ, Li Y. Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting. Nano Lett. 2011;11(5):2119-25.
19. Liu R, Lin YJ, Chou LY, Sheehan SW, He WS, Zhang F, et al. Water Splitting by Tungsten Oxide Prepared by Atomic Layer Deposition and Decorated with an Oxygen-Evolving Catalyst. Angew Chem Int Edit. 2011;50(2):499-502.
20. Sivula K, Le Formal F, Gratzel M. WO3-Fe2O3 Photoanodes for Water Splitting: A Host Scaffold, Guest Absorber Approach. Chem Mater. 2009;21(13):2862-7.
21. Wang GM, Yang XY, Qian F, Zhang JZ, Li Y. Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation. Nano Lett. 2010;10(3):1088-92.
22. Hensel J, Wang GM, Li Y, Zhang JZ. Synergistic Effect of CdSe Quantum Dot Sensitization and Nitrogen Doping of TiO2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation. Nano Lett. 2010;10(2):478-83.
23. Yang XY, Wolcott A, Wang GM, Sobo A, Fitzmorris RC, Qian F, et al. Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting. Nano Lett. 2009;9(6):2331-6.
24. Brillet J, Gratzel M, Sivula K. Decoupling Feature Size and Functionality in Solution-Processed, Porous Hematite Electrodes for Solar Water Splitting. Nano Lett. 2010;10(10):4155-60.
25. Cesar I, Kay A, Martinez JAG, Gratzel M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J Am Chem Soc. 2006;128(14):4582-3.
26. Kay A, Cesar I, Gratzel M. New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J Am Chem Soc. 2006;128(49):15714-21.
27. Frites M, Shaban YA, Khan SUM. Iron oxide (n-Fe2O3) nanowire films and carbon modified (CM)-n-Fe2O3 thin films for hydrogen production by photosplitting of water. Int J Hydrogen Energ. 2010;35(10):4944-8.
28. Gaudon M, Pailhe N, Majimel J, Wattiaux A, Abel J, Demourgues A. Influence of Sn4+ and Sn4+/Mg2+ doping on structural features and visible absorption properties of alpha-Fe2O3 hematite. J Solid State Chem. 2010;183(9):2101-9.
29. Gratzel M, Kiwi J, Morrison CL, Davidson RS, Tseung ACC. Visible-Light-Induced Photodissolution of Alpha-Fe2o3 Powder in the Presence of Chloride Anions. J Chem Soc Farad T 1. 1985;81:1883-90.
30. Hahn NT, Mullins CB. Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped alpha-Fe2O3 Photoanodes. Chem Mater. 2010;22(23):6474-82.
31. Ingler WB, Khan SUM. Photoresponse of spray pyrolytically synthesized magnesium-doped iron(III) oxide (p-Fe2O3) thin films under solar simulated light illumination. Thin Solid Films. 2004;461(2):301-8.
32. Ingler WB, Khan SUM. A self-driven p/n-Fe2O3 tandem photoelectrochemical cell for water splitting. Electrochem Solid St. 2006;9(4):G144-G6.
33. Kumari S, Singh AP, Sonal, Deva D, Shrivastav R, Dass S, et al. Spray pyrolytically deposited nanoporous Ti4+ doped hematite thin films for efficient photoelectrochemical splitting of water. Int J Hydrogen Energ. 2010;35(9):3985-90.
34. Le Formal F, Gratzel M, Sivula K. Controlling Photoactivity in Ultrathin Hematite Films for Solar Water-Splitting. Adv Funct Mater. 2010;20(7):1099-107.
35. Sivula K, Zboril R, Le Formal F, Robert R, Weidenkaff A, Tucek J, et al. Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. J Am Chem Soc. 2010;132(21):7436-44.
36. Tilley SD, Cornuz M, Sivula K, Gratzel M. Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis. Angew Chem Int Edit. 2010;49(36):6405-8.
37. Wang HL, Turner JA. Characterization of Hematite Thin Films for Photoelectrochemical Water Splitting in a Dual Photoelectrode Device. J Electrochem Soc. 2010;157(11):F173-F8.
38. Lin YJ, Zhou S, Sheehan SW, Wang DW. Nanonet-Based Hematite Heteronanostructures for Efficient Solar Water Splitting. J Am Chem Soc. 2011;133(8):2398-401.
39. Zhong DK, Sun JW, Inumaru H, Gamelin DR. Solar Water Oxidation by Composite Catalyst/alpha-Fe2O3 Photoanodes. J Am Chem Soc. 2009;131(17):6086-+.
40. Cesar I, Sivula K, Kay A, Zboril R, Graetzel M. Influence of Feature Size, Film Thickness, and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting. J Phys Chem C. 2009;113(2):772-82.
41. Cherepy NJ, Liston DB, Lovejoy JA, Deng HM, Zhang JZ. Ultrafast studies of photoexcited electron dynamics in gamma- and alpha-Fe2O3 semiconductor nanoparticles. J Phys Chem B. 1998;102(5):770-6.
42. Dareedwards MP, Goodenough JB, Hamnett A, Trevellick PR. Electrochemistry and Photoelectrochemistry of Iron(Iii) Oxide. J Chem Soc Farad T 1. 1983;79:2027-41.
43. Sivula K, Le Formal F, Gratzel M. Solar Water Splitting: Progress Using Hematite (alpha-Fe2O3) Photoelectrodes. Chemsuschem. 2011;4(4):432-49.
44. Hernandez-Alonso MD, Fresno F, Suarez S, Coronado JM. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energ Environ Sci. 2009;2(12):1231-57.
45. Maeda K, Domen K. Photocatalytic Water Splitting: Recent Progress and Future Challenges. J Phys Chem Lett. 2010;1(18):2655-61.
46. Esswein AJ, Nocera DG. Hydrogen production by molecular photocatalysis. Chemical Reviews. 2007;107(10):4022-47.
47. Boddy PJ. Oxygen Evolution on Semiconducting Tio2. J Electrochem Soc. 1968;115(2):199-&.
48. Fujishima A, Honda K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972;238(5358):37-+.
49. Szklarczyk M, Bockris JO. Photoelectrochemical Evolution of Hydrogen on Para-Indium Phosphide. J Phys Chem-Us. 1984;88(22):5241-5.
50. Woodhouse M, Parkinson BA. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem Soc Rev. 2009;38(1):197-210.
51. Walsh A, Wei SH, Yan Y, Al-Jassim MM, Turner JA. Structural, magnetic, and electronic properties of the Co-Fe-Al oxide spinel system: Density-functional theory calculations. Phys Rev B. 2007;76(16).
52. Greeley J, Jaramillo TF, Bonde J, Chorkendorff IB, Norskov JK. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater. 2006;5(11):909-13.
53. Barroso M, Cowan AJ, Pendlebury SR, Gratzel M, Klug DR, Durrant JR. The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of alpha-Fe2O3 toward Water Oxidation. J Am Chem Soc. 2011;133(38):14868-71.
54. Kudo A, Miseki Y. Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev. 2009;38(1):253-78.
55. Osterloh FE. Inorganic materials as catalysts for photochemical splitting of water. Chem Mater. 2008;20(1):35-54.
56. Harriman A, Pickering IJ, Thomas JM, Christensen PA. Metal-Oxides as Heterogeneous Catalysts for Oxygen Evolution under Photochemical Conditions. J Chem Soc Farad T 1. 1988;84:2795-806.
57. Peng JS, Ye M, Zong CJ, Hu FY, Feng LT, Wang XY, et al. Copper-Catalyzed Intramolecular C-N Bond Formation: A Straightforward Synthesis of Benzimidazole Derivatives in Water. J Org Chem. 2011;76(2):716-9.
58. Zhong DK, Cornuz M, Sivula K, Graetzel M, Gamelin DR. Photo-assisted electrodeposition of cobalt-phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energ Environ Sci. 2011;4(5):1759-64.
59. Kleiman-Shwarsctein A, Hu YS, Stucky GD, McFarland EW. NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes. Electrochem Commun. 2009;11(6):1150-3.
60. Elizarova GL, Zhidomirov GM, Parmon VN. Hydroxides of transition metals as artificial catalysts for oxidation of water to dioxygen. Catal Today. 2000;58(2-3):71-88.
61. Jiao F, Frei H. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts. Angew Chem Int Edit. 2009;48(10):1841-4.
62. Artero V, Chavarot-Kerlidou M, Fontecave M. Splitting Water with Cobalt. Angew Chem Int Edit. 2011;50(32):7238-66.
63. Surendranath Y, Dinca M, Nocera DG. Electrolyte-Dependent Electrosynthesis and Activity of Cobalt-Based Water Oxidation Catalysts. J Am Chem Soc. 2009;131(7):2615-20.
64. Kanan MW, Surendranath Y, Nocera DG. Cobalt-phosphate oxygen-evolving compound. Chem Soc Rev. 2009;38(1):109-14.
65. Surendranath Y, Kanan MW, Nocera DG. Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH. J Am Chem Soc. 2010;132(46):16501-9.
66. Kanan MW, Yano J, Surendranath Y, Dinca M, Yachandra VK, Nocera DG. Structure and Valency of a Cobalt-Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy. J Am Chem Soc. 2010;132(39):13692-701.
67. McAlpin JG, Surendranath Y, Dinca M, Stich TA, Stoian SA, Casey WH, et al. EPR Evidence for Co(IV) Species Produced During Water Oxidation at Neutral pH. J Am Chem Soc. 2010;132(20):6882-+.
68. Risch M, Khare V, Zaharieva I, Gerencser L, Chernev P, Dau H. Cobalt-Oxo Core of a Water-Oxidizing Catalyst Film. J Am Chem Soc. 2009;131(20):6936-+.
69. Symes MD, Surendranath Y, Lutterman DA, Nocera DG. Bidirectional and Unidirectional PCET in a Molecular Model of a Cobalt-Based Oxygen-Evolving Catalyst. J Am Chem Soc. 2011;133(14):5174-7.
70. Esswein AJ, Surendranath Y, Reece SY, Nocera DG. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energ Environ Sci. 2011;4(2):499-504.
71. Steinmiller EMP, Choi KS. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. P Natl Acad Sci USA. 2009;106(49):20633-6.
72. Seabold JA, Choi KS. Effect of a Cobalt-Based Oxygen Evolution Catalyst on the Stability and the Selectivity of Photo-Oxidation Reactions of a WO3 Photoanode. Chem Mater. 2011;23(5):1105-12.
73. McDonald KJ, Choi KS. Photodeposition of Co-Based Oxygen Evolution Catalysts on alpha-Fe2O3 Photoanodes. Chem Mater. 2011;23(7):1686-93.
74. King PDC, Veal TD, McConville CF, Zuniga-Perez J, Munoz-Sanjose V, Hopkinson M, et al. Surface Band-Gap Narrowing in Quantized Electron Accumulation Layers. Phys Rev Lett. 2010;104(25).
75. Chadi JD, Harrison WA. Proceedings of the 17th International Conference on the Physics of Semiconductors. 1984:6-10.
76. Yu PY, Cardona M. Fundamentals of Semiconductors-Photoelectron Spectroscopy. 2005:427-68.
77. Schubert EF, Kuo JM, Kopf RF, Jordan AS, Luftman HS, Hopkins LC. Fermi-Level-Pinning-Induced Impurity Redistribution in Semiconductors during Epitaxial-Growth. Phys Rev B. 1990;42(2):1364-8.
78. Kennedy JH, Frese KW. Photo-Oxidation of Water at Alpha-Fe2o3 Electrodes. J Electrochem Soc. 1978;125(5):709-14.
79. Satsangi VR, Kumari S, Singh AP, Shrivastav R, Dass S. Nanostructured hematite for photoelectrochemical generation of hydrogen. Int J Hydrogen Energ. 2008;33(1):312-8.
80. Kleiman-Shwarsctein A, Huda MN, Walsh A, Yan YF, Stucky GD, Hu YS, et al. Electrodeposited Aluminum-Doped alpha-Fe2O3 Photoelectrodes: Experiment and Theory. Chem Mater. 2010;22(2):510-7.
81. Hsu YP, Lee SW, Chang JK, Tseng CJ, Lee KR, Wang CH. Effects of Platinum Doping on the Photoelectrochemical Properties of Fe2O3 Electrodes. Int J Electrochem Sc. 2013;8(9):11615-23.
82. Wang GM, Ling YC, Wheeler DA, George KEN, Horsley K, Heske C, et al. Facile Synthesis of Highly Photoactive alpha-Fe2O3-Based Films for Water Oxidation. Nano Lett. 2011;11(8):3503-9.
83. Yan GT, Zhang M, Hou J, Yang JJ. Photoelectrochemical and photocatalytic properties of N plus S co-doped TiO2 nanotube array films under visible light irradiation. Mater Chem Phys. 2011;129(1-2):553-7.
84. Cha HG, Song J, Kim HS, Shin W, Yoon KB, Kang YS. Facile preparation of Fe2O3 thin film with photoelectrochemical properties. Chem Commun. 2011;47(8):2441-3.
85. Duret A, Gratzel M. Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis. J Phys Chem B. 2005;109(36):17184-91.
86. Goncalves RH, Lima BHR, Leite ER. Magnetite Colloidal Nanocrystals: A Facile Pathway To Prepare Mesoporous Hematite Thin Films for Photoelectrochemical Water Splitting. J Am Chem Soc. 2011;133(15):6012-9.
87. Hu YS, Kleiman-Shwarsctein A, Forman AJ, Hazen D, Park JN, McFarland EW. Pt-doped alpha-Fe2O3 thin films active for photoelectrochemical water splitting. Chem Mater. 2008;20(12):3803-5.
88. Gomes WP, Vanmaekelbergh D. Impedance spectroscopy at semiconductor electrodes: Review and recent developments. Electrochim Acta. 1996;41(7-8):967-73.
89. Gomes WP, Cardon F. Electron-Energy Levels in Semiconductor Electrochemistry. Prog Surf Sci. 1982;12(2):155-215.
90. H. GH, Thesis PD. University of Gent. 1991.
91. Meirhaeghe RLV, Dutoit EC, Cardon F, Gomes WP. On the application of the Kramers-Kronig relations to problems concerning the frequency dependence of electrode impedance. Electrochim Acta. 1975;20(12):995-9.
92. E.'t LRU, J S, G. B. Interfacial Phenomena of TiO2-Photoanodes. Berichte der Bunsengesellschaft für physikalische Chemie. 1981;85(7):592-7.
93. Mccann JF, Badwal SPS. Equivalent-Circuit Analysis of the Impedance Response of Semiconductor Electrolyte Counter-Electrode Cells. J Electrochem Soc. 1982;129(3):551-9.
94. Fransen F, Madou MJ, Laflere WH, Cardon F, Gomes WP. On the Dielectric-Properties of Semiconducting Materials as Obtained from Impedance Measurements on Schottky Barriers. J Phys D Appl Phys. 1983;16(5):879-88.
95. Goossens A, Schoonman J. An Impedance Study of Boron Phosphide Semiconductor Electrodes. J Electrochem Soc. 1992;139(3):893-900.
96. Oskam G, Vanmaekelbergh D, Kelly JJ. A Reappraisal of the Frequency-Dependence of the Impedance of Semiconductor Electrodes. J Electroanal Chem. 1991;315(1-2):65-85.
97. Goodisman J. Calculation of Pseudocontact Shifts for Co(Ch3oh)5x2+ Complexes. J Phys Chem-Us. 1975;79(12):1206-13.
98. Nogami G. Characterization of Semiconductor Electrodes with a Deep Impurity Level. J Electrochem Soc. 1982;129(10):2219-23.
99. Rose AW, Bianchimosquera GC. Adsorption of Cu, Pb, Zn, Co, Ni, and Ag on Goethite and Hematite - a Control on Metal Mobilization from Red Beds into Stratiform Copper-Deposits. Econ Geol Bull Soc. 1993;88(5):1226-36.
100. Zhao WR, Gu JL, Zhang LX, Chen HR, Shi JL. Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc. 2005;127(25):8916-7.
101. Schecher WD, McAvoy DC. User’s manual, v2.00. Environmental Research Software: Hallowell, Maine. 2003.
102. Wang T, Hung H, Cheng Y, Huang M, Hsieh Y, Wang C. Understanding the role of phosphate in the photoelectrochemical performance of cobalt-phosphate/hematite electrode systems. RSC Advances. 2016;34(6):28236-47.
103. Vayssieres L, Beermann N, Lindquist SE, Hagfeldt A. Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem Mater. 2001;13(2):233-5.
104. Zhao H, Fu WY, Yang HB, Xu Y, Zhao WY, Zhang YY, et al. Synthesis and characterization of TiO2/Fe2O3 core-shell nanocomposition film and their photoelectrochemical property. Appl Surf Sci. 2011;257(21):8778-83.
105. Hong YR, Liu ZL, Al-Bukhari SFBSA, Lee CJJ, Yung DL, Chi DZ, et al. Effect of oxygen evolution catalysts on hematite nanorods for solar water oxidation. Chem Commun. 2011;47(38):10653-5.
106. Qin DD, Tao CL, In SI, Yang ZY, Mallouk TE, Bao NZ, et al. Facile Solvothermal Method for Fabricating Arrays of Vertically Oriented alpha-Fe2O3 Nanowires and Their Application in Photoelectrochemical Water Oxidation. Energ Fuel. 2011;25(11):5257-63.
107. Suntivich J, Gasteiger HA, Yabuuchi N, Nakanishi H, Goodenough JB, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries (vol 3, pg 546, 2011). Nat Chem. 2011;3(8):647-.
108. Doyle RL, Godwin IJ, Brandon MP, Lyons MEG. Redox and electrochemical water splitting catalytic properties of hydrated metal oxide modified electrodes. Physical Chemistry Chemical Physics. 2013;15(33):13737-83.
109. Burke LD, Lyons MEG. The Formation and Stability of Hydrous Oxide-Films on Iron under Potential Cycling Conditions in Aqueous-Solution at High Ph. J Electroanal Chem. 1986;198(2):347-68.
110. Hernandez-Pagan EA, Vargas-Barbosa NM, Wang TH, Zhao YX, Smotkin ES, Mallouk TE. Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells. Energ Environ Sci. 2012;5(6):7582-9.
111. Yamaguchi A, Inuzuka R, Takashima T, Hayashi T, Hashimoto K, Nakamura R. Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH. Nat Commun. 2014;5.
112. Galan-Mascaros JR. Water Oxidation at Electrodes Modified with Earth-Abundant Transition-Metal Catalysts. Chemelectrochem. 2015;2(1):37-50.
113. Carbonare ND, Cristino V, Berardi S, Carli S, Argazzi R, Caramori S, et al. Hematite Photoanodes Modified with an FeIII Water Oxidation Catalyst. Chemphyschem. 2014;15(6):1164-74.
114. Yu Q, Meng XG, Wang T, Li P, Ye JH. Hematite Films Decorated with Nanostructured Ferric Oxyhydroxide as Photoanodes for Efficient and Stable Photoelectrochemical Water Splitting. Adv Funct Mater. 2015;25(18):2686-92.
115. Costentin C, Porter TR, Saveant JM. Conduction and Reactivity in Heterogeneous-Molecular Catalysis: New Insights in Water Oxidation Catalysis by Phosphate Cobalt Oxide Films. J Am Chem Soc. 2016;138(17):5615-22.
116. Wagner ME, Valenzuela R, Vargas T, Colet-Lagrille M, Allanore A. Copper Electrodeposition Kinetics Measured by Alternating Current Voltammetry and the Role of Ferrous Species. J Electrochem Soc. 2016;163(2):D17-D23.
117. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1. http://srdatanistgov/xps/.
118. Barron V, Torrent J. Surface hydroxyl configuration of various crystal faces of hematite and goethite. J Colloid Interf Sci. 1996;177(2):407-10.
119. Wang T, Hung HT, Wang W, Li PC, Hsieh YK, Dong Y, et al. Application of surface complexation modeling on modification of hematite surface with cobalt cocatalysts: a potential tool for preparing homogeneously distributed catalysts. Rsc Advances. 2015;5(83):67700-5.
120. Wang TH, Hung HT, Cheng YR, Huang MC, Hsieh YK, Wang CF. Understanding the role of phosphate in the photoelectrochemical performance of cobaltphosphate/hematite electrode systems. Rsc Advances. 2016;6(34):28236-47.
121. Zandi O, Hamann TW. The potential versus current state of water splitting with hematite. Physical Chemistry Chemical Physics. 2015;17(35):22485-503.