研究生: |
林恢弘 Hui-Hung Lin |
---|---|
論文名稱: |
整合紋理模型技術之數位紋理影像壓縮程序 Texture Image Compression Based on Auto-regressive Model |
指導教授: |
彭明輝
Ming-Hwei Perng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 影像壓縮 、紋理模型 、自回歸模型 |
外文關鍵詞: | image compression, texture model, AR model, auto-regressive model |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於紋理模型技術可將大量的紋理資訊濃縮為少量的模型參數,因此在靜態數位影像壓縮領域成為突破壓縮比瓶頸的關鍵技術。目前紋理模型技術所遭遇到的主要問題在於:1. 缺乏對紋理模型的基礎研究以致於相關技術可靠度不足;2. 沒有將紋理模型應用於適當的資訊平面,以致於無法有效的提升影像品質。
本論文首先對選用的紋理模型—自回歸模型(auto-regressive model, AR model)進行相關的基礎研究。由於AR model所重建出的訊號可視為差分方程式的解,因此本論文從求解差分方程式的基礎理論出發,分析AR model階數對重建訊號周期性的影響,以及初始值對重建訊號量值範圍、周期性與方向性的影響。並根據研究結果提出階數選擇方法以及大量壓縮初始值之方法。
最後,本論文整合出一套完整的靜態數位紋理影像壓縮技術,其策略是僅對輸入影像的高頻之低位元資訊使用紋理模型。從實驗結果可以證明,本論文提出的紋理影像壓縮技術僅需額外付出極低的資料量(0.05 bits/pixel),便可相當有效的提升高壓縮比下的紋理影像品質。
[1] O. Egger, P. Fleury, T. Ebrahimi and M. Kunt, “High-performance compression of visual information - a tutorial review - Part I: still pictures,” Proceedings of the IEEE, vol. 87, no. 6, pp. 976-1011, 1999.
[2] A. Rosenfeld, “Picture Processing”, Computer Graphics and Image Processing, vol. 19, no.1, pp. 35-75, May 1982.
[3] P. Stoica and Y. Selen, “Model-order selection - a review of information criterion rules,” IEEE Signal Processing Magazine, vol. 21, no. 4, pp.36-47, July 2004.
[4] O. Alata and C. Olivier, “Choice of a 2-D causal autoregressive texture model using information criteria,” Pattern Recognition Letters, vol. 24, no. 9-10, pp.1191-1201, June 2003.
[5] R. L. Kashyap and R. Chellappa, “Estimation and choice of neighbors in spatial-interaction models of images,” IEEE Transactions on Information Theory, vol. IT-29, no. 1, pp. 60-72, Jan. 1983.
[6] A. Sarkar, K.M.S. Sharma and R. V. Sonak, “A new approach for subset 2-D AR model identification for describing textures,” IEEE Transactions on Image Processing, vol. 6, no. 3, pp. 407-413, Mar. 1997.
[7] Håvard Iversen, Tor Lønnestad “An evaluation of stochastic models for analysis and synthesis of gray-scale texture,” Pattern Recognition Letters, vol. 15 , Issue 6, pp. 575-585, June 1994.
[8] Nadenau, Marcus J. (VisioWave Corporation); Reichel, Julien; Kunt, Murat “Visually improved image compression by combining a conventional wavelet-codec with texture modeling,” IEEE Transactions on Image Processing, vol. 11, no. 11, pp. 1284-1294, Nov. 2002.
[9] T. W. Ryan, D. Sanders, H. D. Fisher, and A. E. Iverson, “Image compression by texture modeling in the wavelet domain,” IEEE Transaction on Image Processing, vol. 5, pp. 26-36, Jan. 1996.
[10] K. Debure and T.Kubato, “Autoregressive texture segmentation and synthesis for wavelet image compression,” Proceeding of Image and Multidimenional Digital Signal Processing, pp. 131-134, July 1998.
[11] S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, July 1989.
[12] M. Antonini, M. Barlaud, P. Mathieu and I. Daubechies, “Image coding using wavelet transform,” IEEE Transactions on Image Processing, vol. 1, pp. 205-220, Apr. 1992.
[13] R. M. Haralick, Handbook of Pattern Recognition and Image Processing, pp. 247-279, Academic Press, New York, 1986.
[14] K.W. Pratt, O.D. Faugeras and A. Gagalowicz “Applications of stochastic texture field models to image processing,” Proceeding of the IEEE, vol. 69, no.5, pp. 542-551, May 1981.
[15] L. Van Gool, P. Dewaele and A. Oosterlinck “Texture analysis anno 1983.” Computer Vision, Graphics, and Image Processing, vol. 29, no. 3, pp. 336-357, Mar. 1985.
[16] J. D. Edward, Rangasami L. Kashyap and O. Robert Mitchell, "Image Data Compression Using Autoregressive Time Series Models," Pattern Recognition, vol. 11, no. 5-6, pp. 313-323, 1979.
[17] R. E. Mickens, Difference Equations. New York: Van Nostrand Reinhold, 1987, pp. 123-150.