研究生: |
蔡煜祥 Tsai, Yu-Hsiang |
---|---|
論文名稱: |
具調整機制之計量型重複群集抽樣計畫 A Variables Repetitive Group Sampling Plan with the Adjustable Mechanism for Lot Sentencing |
指導教授: |
吳建瑋
Wu, Chien-Wei |
口試委員: |
蘇明鴻
Shu, Ming-Hung 張國浩 Chang, Kuo-Hao |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 操作特性曲線 、驗收抽樣計畫 、製程能力指標 、製程良率 |
外文關鍵詞: | Operating characteristic curve, Acceptance sampling plan, Process capability index, Process yield |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
驗收抽樣計畫(acceptance sampling plan)為品質保證領域中相當受到重視的管理方法,其目的為提供決策者可靠的判斷準則,決定送驗貨批是否達到標準並予以允收或拒收的判定。其中,單次抽樣為業界中最常應用之抽樣計畫,雖然操作流程簡易,但也伴隨著抽取過多不必要樣本的情況發生,因此,有學者提出重複群集驗收抽樣計畫改善此情形,結果顯示在大部分的品質水準下,該計畫能夠大幅降低檢驗樣本數,不過一旦品質水準落於不易判定之區域時,反而導致多次抽樣檢驗,其平均抽樣數甚至可能超越單次抽樣計畫。
為克服上述問題,本研究基於製程能力指標提出具調整機制之重複群集抽樣計畫,藉由調整允許抽樣總數以避免過多重複檢驗的情形發生,有效減少貨批難以判定時所需的樣本數。此外,本文透過製程能力指標的精確抽樣分配推導出計畫之允收機率函數,利用操作特性曲線上的特定兩點式條件作為限制式,以最小化平均抽樣數作為目標式,建構出最佳化數學模型並進行計畫參數之求解,並將參數結果依據常見之品質水準以及風險組合,整理成表格以利於實務上之應用。另外,根據操作特性曲線以及平均樣本數曲線,探討並比較文獻中抽樣計畫之績效,最後除了導入實際案例,驗證本研究之實用性之外,同時結合使用者介面,使決策者能夠簡單地操作本文所提之抽樣計畫。
The acceptance sampling plan is an important management approach for quality assurance which provides reliable decision rules for lot sentencing. Single sampling plan (SSP) has been considered as the most popular sampling plan since its operating procedure is simple to implement. However, the procedure of SSP is also the reason why it demands more unnecessary sample. In order to improve SSP, some scholars developed repetitive group sampling (RGS) plan. Comparing to SSP, RGS plan usually has less required sample size under the most of quality levels. Nevertheless, while the quality level is between acceptable quality level (AQL) and rejectable quality level (RQL), RGS plan probably has to resample many times. In this situation, the average sample number (ASN) may exceed SSP.
To overcome the above problem, this paper constructs the new RGS plan with the adjustable mechanism based on process capability index. Through the limitation of total sampling times, the designed plan effectively reduces ASN when the quality level is in the region [AQL, RQL]. Moreover, the operating characteristic function is derived by using the exact sampling distribution in the proposed plan. The plan parameters are calculated by solving optimization model and tabulated under benchmarking quality levels and allowable risks for practical applications. The performance of the plan is examined and compared with the existing sampling plans in terms of operating characteristic curve and ASN curve. Finally, two examples are provided to illustrate the applicability of the proposed plan.
一、中文文獻
1. 鄭春生 (2010)。品質管理─現代化觀念與實務應用,新北市:全華。
2. 陳冠潔 (2016)。基於製程能力指標之產出績效檢定與驗收抽樣計畫操作平台建構。未出版碩士論文,國立清華大學工業工程與工程管理學系,新竹市。
二、英文文獻
1. Aslam, M., Yen, C. H., and Jun, C. H. (2011). Variable repetitive group sampling plans with process loss consideration. Journal of Statistical Computation and Simulation, 81(11), 1417-1432.
2. Aslam, M., Wu, C. W., Jun, C. H., Azam, M., and Itay, N. (2013). Developing a variables repetitive group sampling plan based on process capability index with unknown mean and variance. Journal of Statistical Computation and Simulation, 83(8), 1507-1517.
3. Balamurali, S., and Jun, C. H. (2006). Repetitive group sampling procedure for variables inspection. Journal of Applied Statistics, 33(3), 327-338.
4. Balamurali, S., Park, H., Jun, C. H., Kim, K. J., and Lee, J. (2005). Designing of variables repetitive group sampling plan involving minimum average sample number. Communications in Statistics-Simulation and Computation, 34(3), 799-809.
5. Boyles, R. A. (1991). The Taguchi capability index. Journal of Quality Technology, 23, 17-26.
6. Bruhn-Suhr, M., and Krumbholz, W. (1990). A new variables sampling plan for normally distributed lots with unknown standard deviation and double specification limits. Statistical Papers, 31(1), 195-207.
7. Chou, Y. M., and Owen, D. B. (1989). On the distributions of the estimated process capability indices. Communications in Statistics-Theory and Methods, 18(12), 4549-4560.
8. Garvin, D. A. (1987). Competing in the eight dimensions of quality, Harvard Business Review, Sept.–Oct., 87(6), 101–109.
9. Govindaraju, K., and Ganesalingam, S. (1997). Sampling inspection for resubmitted lots. Communications in Statistics-Simulation and Computation, 26(3), 1163-1176.
10. Hald, A., and Københavns universitet. Institut for matematisk statistik. (1981). Statistical theory of sampling inspection by attributes (pp. 288-298). London: Academic Press.
11. Hamaker, H. C. (1979). Acceptance sampling for percent defective by variables and by attributes. Journal of Quality Technology, 11, 139-148.
12. Jennett, W. J., and Welch, B. L. (1939). The control of proportion defective as judged by a single quality characteristic varying on a continuous scale. Supplement to the Journal of the Royal Statistical Society, 6(1), 80-88.
13. Juran, J. M. (1974). Quality Control Handbook, McGraw-Hill, New York, USA.
14. Kane, V. E. (1986). Process capability indices. Journal of quality technology, 18(1), 41-52.
15. Lin, P. C., and Pearn, W. L (2002). Testing process capability for one-sided specification limit with application to the voltage level translator. Microelectronics Reliability, 42, 1975-1983.
16. Liu, S. W., and Wu, C. W. (2014). Design and construction of a variables repetitive group sampling plan for unilateral specification limit. Communications in Statistics-Simulation and Computation, 43(8), 1866-1878.
17. Montgomery, D. C. (2007). Introduction to Statistical Quality Control, John Wiley & Sons.
18. Negrin, I., Parmet, Y., and Schechtman, E. (2009). Developing a sampling plan based on . Quality Engineering, 21(3), 306-318.
19. Negrin, I., Parmet, Y., and Schechtman, E. (2011). Developing a sampling plan based on —unknown variance. Quality and Reliability Engineering International, 27(1), 3-14.
20. Owen, D. B. (1967). Variables sampling plans based on the normal distribution. Technometrics, 9(3), 417-423.
21. Park, H. K., Moon, Y. G., Jun, C. H., Balamurali, S., and Lee, J. (2004). A variables repetitive group sampling plan for minimizing average sample number. Journal of Korean Institute of Industrial Engineers, 30(3), 205-212.
22. Pearn, W. L., and Chen, K. S. (2002). One-sided capability indices and : decision making with sample information. International Journal of Quality & Reliability Management, 19(3), 221-245.
23. Pearn, W. L., and Lin, P. C. (2004). Testing process performance based on capability index with critical values. Computers & Industrial Engineering, 47(4), 351-369.
24. Pearn, W. L., and Shu, M. H. (2003). Manufacturing capability control for multiple power-distribution switch processes based on modified MPPAC. Microelectronics Reliability, 43(6), 963-975.
25. Pearn, W. L., and Wu, C. W. (2006). Critical acceptance values and sample sizes of a variables sampling plan for very low fraction of defectives. Omega, 34(1), 90-101.
26. Pearn, W. L., and Wu, C. W. (2007). An effective decision making method for product acceptance. Omega, 35(1), 12-21.
27. Seidel, W. (1997). Is sampling by variables worse than sampling by attributes? A decision theoretic analysis and a new mixed strategy for inspecting individual lots. Sankhya: The Indian Journal of Statistics, 59(1), 96-107.
28. Sherman, R. E. (1965). Design and evaluation of a repetitive group sampling plan. Technometrics, 7(1), 11-21.
29. Suresh, R. P., and Ramanathan, T. V. (1997). Acceptance sampling plans by variables for a class of symmetric distributions. Communications in Statistics-Simulation and Computation, 26(4), 1379-1391.
30. Wortham, A. W., and Baker, R. C. (1976). Multiple deferred state sampling inspection. The International Journal of Production Research, 14(6), 719-731.
31. Wu, C. W. (2012). An efficient inspection scheme for variables based on Taguchi capability index. European Journal of Operational Research, 223(1), 116-122.
32. Wu, C. W., and Liu, S. W. (2014). Developing a sampling plan by variables inspection for controlling lot fraction of defectives. Applied Mathematical Modelling, 38(9), 2303-2310.
33. Wu, C. W., Aslam, M., Chen, J. C., and Jun, C. H. (2015). A repetitive group sampling plan by variables inspection for product acceptance determination. European Journal of Industrial Engineering, 9(3), 308-326.
34. Wu, C. W., Wu, T. H., and Chen, T. (2015). Developing a variables repetitive group sampling scheme by considering process yield and quality loss. International Journal of Production Research, 53(7), 2239-2251.
35. Yen, C. H., Chang, C. H., and Aslam, M. (2015). Repetitive variable acceptance sampling plan for one-sided specification. Journal of Statistical Computation and Simulation, 85(6), 1102-1116.