簡易檢索 / 詳目顯示

研究生: 蔡佳成
Tsai,Chia-Cheng
論文名稱: 利用磁控濺鍍法備製鋯-銅-銀-鋁合金薄膜之製程及性質研究
Synthesis and characterization of amorphous and crystalline Zr-Cu-Ag-Al metallic films deposited by unbalanced magnetron sputtering
指導教授: 喻冀平
Yu,Ge-Ping
黃嘉宏
Huang,Jia-Hong
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 97
語文別: 英文
論文頁數: 77
中文關鍵詞: 金屬玻璃非晶薄膜腐蝕非平衡磁控濺鍍
外文關鍵詞: metallic glass, amorphous, thin film, corrosion, UBM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的為研究鋯-銅-銀-鋁金屬薄膜的非晶和結晶相對於機械性質及腐蝕性質的影響。利用非平衡磁控濺鍍系統,並且使用兩種不同的鍍膜溫度:室溫和400℃,非晶和結晶的金屬薄膜成功地鍍著於p型(100)矽晶片和304不□鋼基材上。
    本研究指出非晶和結晶相對於機械性質和腐蝕性質的影響最為明顯。在機械性質方面,擁有t-CuZr2和o-Cu10Zr7結晶相的金屬薄膜呈現較高的硬度。此外,殘留應力的部分,在非晶和結晶的金屬薄膜都是拉伸應力。由於結晶金屬薄膜有較大的熱應力和晶粒成長結合產生的應力,因此呈現較大的殘留應力。在防蝕性質方面,利用動態極化掃描,並將試片置於1N H2SO4+ 0.05 KSCN的試驗溶液中,可以獲得金屬薄膜的本質腐蝕性質以及對於304不□鋼的防蝕能力。非晶和結晶相金屬薄膜的本質腐蝕電位分別為-12.1和47.4 mVSCE,腐蝕電流為0.04和3.22μA/cm2。透過鍍著非晶或結晶相金屬薄膜,304不□鋼的防蝕能力明顯地改善,而且非晶相薄膜的防蝕效果又優於結晶相。


    致謝 i 摘要 iii Abstract iv Contents v List of Figures viii List of Tables x Chapter 1 Introduction 1 Chapter 2 Literature Review 2 2.1 History of Bulk Metallic Glasses (BMG) 2 2.2 Physics of BMG and Criterion for BMG 4 2.3 Characteristics of Bulk Metallic Glasses 5 2.3.1 Mechanical Properties 5 2.3.2 Electrical Properties 6 2.3.3 Corrosion Behavior 6 2.4 Methods to Fabricate Amorphous Alloys 8 2.5 Deposition Method (Unbalanced Magnetron Sputtering System, UBMS) 12 2.6 Characteristics of Metallic Films 13 2.7 Compositions Selection of Sputtering Target 13 2.8 Mechanisms of Plastic Deformation of Bulk Metallic Glasses 16 2.9 Binary Cu-Zr Alloy System 17 2.10 Theoretical Basis of the Contact Angle and Surface Energy 19 2.11 Corrosion Behavior of Bulk Metallic Glasses 20 Chapter 3 Experimental Details 23 3.1 Specimen Preparation and Deposition Process 23 3.2 Characterization Methods 27 3.2.1 Wavelength Dispersive Spectrometer (WDS) 27 3.2.2 Rutherford Backscattering Spectroscopy (RBS) 27 3.2.3 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM) 28 3.2.4 Auger Electron Spectroscopy (AES) 28 3.2.5 X-Ray Diffraction (XRD) 28 3.3 Properties Measurement 29 3.3.1 Electrical Resistivity 29 3.3.2 Atomic Force Microscopy 29 3.3.3 Hardness 30 3.3.4 Optical Residual Stress 30 3.4 Contact Angle and Surface Energy 32 3.5 Corrosion Resistance 33 Chapter 4 Results 37 4.1 Compositions 37 4.1.1 WDS 37 4.1.2 AES 41 4.2 Structure 44 4.2.1 XRD 44 4.2.2 Grain Size 44 4.2.3 SEM 47 4.3 Properties 48 4.3.1 Packing Density and Packing Factor 48 4.3.2 Hardness and Elastic Constant 48 4.3.3 Roughness 53 4.3.4 Electrical Resistivity 53 4.3.5 Optical Residual Stress 55 4.3.6 Contact Angle and Surface Energy 55 4.3.7 Corrosion Behavior 55 Chapter 5 Discussion 63 5.1 Mechanical Properties of Zr-Cu-Ag-Al Metallic Films 63 5.1.1 Hardness 63 5.1.2 Residual Stress 63 5.2 Corrosion Behavior of Zr-Cu-Ag-Al Metallic Films 66 5.2.1 Intrinsic Corrosion Resistance of Metallic Films 66 5.2.2 Corrosion Protection of 304 Stainless Steel by Metallic Films 67 Chapter 6 Conclusions 72 References 73

    [1] Cohen M.H., Turnbull D. ,J. Chem. Phys. 31 (1959) 164
    [2] Klement W., Willens R.H., Duwez P., Nature 187 (1960) 869
    [3] Cahn, R. W., in Rapidly Solidified Alloys, ed. H. H. Libermann. Marcel Dekker, New York, 1993, p. 1
    [4] Chen H. S. and Turnbull D., Acta Metall. 17 (1969) 1021
    [5] Kui H.W., Greer A.L. and Turnbull D., Appl. Phys. Lett. 45 (1984) 615
    [6] Inoue A, Ohtera K., Kita K. and Masumoto T., Jpn. J. Appl. Phys. 27 (1988) L2248
    [7] Inoue A., Zhang T. and Masumoto T., Mater. Trans., JIM 30 (1989) 965
    [8] Inoue A., Zhang T. and Masumoto T., Mater. Trans., JIM 31 (1990) 177
    [9] Peker A. and Johnson W. L., Appl. Phys. Lett. 63(1993) 2342.
    [10] Inoue A. and Gook J. S., Mater. Trans., JIM 36 (1995) 1180
    [11] Inoue A., Zhang T., Itoi, T. and Takeuchi A., Mater. Trans., JIM, 38 (1997) 359
    [12] Inoue A., Nishiyama N. and Matsuda T., Mater. Trans., JIM 37 (1996) 181
    [13] Schwarz R. B. and He Y., Mater. Sci. Forum (1997) 231.
    [14] Zhang T. and Inoue A., Mater. Trans., JIM 39 (1998) 1001
    [15] Zhang T. and Inoue A., Mater. Trans., JIM 40 (1999) 301
    [16] Akatsuka R., Zhang T., Koshiba M. and Inoue, A., Mater. Trans., JIM 40 (1999) 258
    [17] X.H. Lin and W.L. Johnson, J. Appl. Phys. 78 (1995) 6514
    [18] Inoue A. and Nishiyama N., Mater. Sci. Eng. 401 (1997) A226-228
    [19] Zhang T., Inoue A. and Masumoto T., Mater. Trans., JIM 32 (1991) 1005
    [20] Inoue A., Zhang T., Nishiyama N., Ohba K. and Masumoto T., Mater. Trans., JIM 32 (1993) 1234
    [21] Inoue A. Acta Mater. 48 (2000) 279-306
    [22] M. Telford, Mater. Today, (2004) 43
    [23] Y. Yokoyama, T. Yamasaki, P.K. Liaw, R.A. Buchanan, A Inoue, J. Alloys Compd., 434-435 (2007) 160-163
    [24] M. Ohring, The Material Science of Thin Films, Academic Press, San Diego (1992) p. 111
    [25] S.M. Rossnagel, Sputter Deposition, Opportunities for Innovation, in W.D. Sproul, L.O. Legg, Advanced Surface Engineering, Techonic Publishing Co., Switzerland, 1995
    [26] B. Window, Surf. Coat. Technol. 81(1996) 92-98
    [27] B. Window, N. Savvides, J. Vac. Sci. Technol. A f (1986) 196-202
    [28] B. Window, Surf. Coat. Technol. 71 (1995) 93-97
    [29] D.G. Teer, Surf. Coat. Technol. 565 (1989) 39-40
    [30] P.J. Kelly, R.D. Arnell, Vacuum 56 (2000) 159
    [31] Kobayashi A, Yano S., Kimura H., Inoue A., Mater. Sci. Eng. B 148 (2008) 110-113
    [32] Y.H. Yoo, S.H. Lee, J.G. Kim, J.S. Kim, C. Lee, J. Alloys Compd. 461 (2008) 304-311
    [33] A.P. Wang, X.C. Chang, W.L. Hou, J.Q. Wang, Mater. Sci. Eng. A 449-451 (2007) 27-280
    [34] C.L. Chiang, J.P. Chu, F.X. Liu, P.K. Liaw, R.A. Buchanan, Appl. Phys, Lett. 88 (2006) 131902
    [35] A. Inoue, W. Zhang, T. Zhang, K. Korosaka, Acta Mater. 49 (2001) 2645
    [36] S.C. Glade, J.F. Loffler, S. Bossuyt, W.L. Johnson, M.K. Miller, J. Appl. Phys. 89 (2001) 1573
    [37] D.H. Bae, H.K.Lim, D.H. Kim, W.T. Kim, Acta Mater. 50 (2002) 1749
    [38] T. Fukami, H. Yamamoto, D. Okai, Y. Yokoyama, T. Yamasaki, A. Inoue, Mater. Sci. Eng. B 131 (2006) 1-8
    [39] W. Zhang, C. Qin, X. Zhang, A. Inoue, Mater. Sci. Eng. A 449-451 (2007) 631-635
    [40] S.O. Park, J.C. Lee, Y.C.Kim, E.Fleury, D.S. Sung, D.H. Kim, Mater. Sci. Eng. A 449-451 (2007) 561-564
    [41] Y.C. Kim, J.C. Lee, P.R. Cha, J.P. ahn, E. Fleury, Mater. Sci. Eng. A 473 (2006) 248-253
    [42] G.Q. Zhang Q.K. Jiang, L.Y. Chen, M. Shao, J.F. Liu, J.Z. Jiang, J. Alloys Compd. 424 (2006) 176-178
    [43] A. Inoue, Y. Kawamura, Y. Saotome, Mater. Sci. Forum 233-234 (1997) 147-154
    [44] C.L. Qin, W. Zhang, H. Kimura K. Asami, A. Inoue, Mater. Trans., JIM 45 (2004) 1958-1961
    [45] D.S. Sung, O.J. Kwon, E. Fleury, K.B. Kim, J.C. Lee, D.H. Kim, Y.C. Kim, Met. Mater. Int. Vol. 10 No. 6 (2004) 575-579
    [46] F. Spaepen, Acta Metall. 25 (1997) 407
    [47] Y. Kamura, T. Shibata, A. Inoue, T. Matsumoto, K. Nonaka, H. Nakajima, T. Zhang, Amorphous and Nono-crystalline Material, Springer, 2000, p. 53
    [48] A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Matsumoto, Mater. Trans., JIM 34 (1993) 1234
    [49] A. Peker, W.L. Johnson, Appl. Phys. Lett. 63 (1993) 2342
    [50] Arias D, Abriata JP. Bulletin of Alloy Phase Diagrams 1990;11:452
    [51] T. Young, Philos. Trans. R. Soc. (London), 9 (1805) 255
    [52] E. Lugscheider, K. Bobzin, M. Moller, Thin Solid Films 356 (1999) 367
    [53] F.M. Fowkes, Ind. Eng. Chem., 56 (1964) 40
    [54] D.K. Owens and R.C. Wendt, J. Appl. Polym. Sci., 13 (1969) 1741.
    [55] M. Naka, K. Hashimoto, T. Masumoto, Corrosion. 32 (1976) 146
    [56] T.M. Devine, J. Electrochem. Soc. 1 (1997) 124
    [57] A.N. Mansour, C.A. Melendres, J. Electrochem. Soc. 142 (1995) 1961
    [58] T. Ramchandran, T.K.G. Namboodhiri, Corrosion, 40 (1984) 73
    [59] U. Kamachi Mudali, S. Scudino, U. Kuhn, J. Eckert, A. Gebert, Scr. Mater. 50 (2004) 1379-1384
    [60] Y.F. Wu, W.H. Chiang, J. Chu, T.G. Nieh, Y. Kawamura, J.K. Wu, Mater. Lett. 60 (2006) 2416-2418
    [61] W.H. Peter, R.A. Buchanan, C.T. Liu, P.K. Liaw, M.L. Morrison, J.A. Horton, C.A. Carmichael Jr., J.L. Wright, Intermetallics 10 (2002) 1157-1162
    [62] W.H. Jiang, F. Jiang, B.A. Green, F.X. Liu, P.K. Liaw, H. Choo, K.Q. Qiu, Appl. Phys. Lett. 91 (2007) 041904
    [63] W. J. Chou, G.P. Yu, J.H. Huang, Corros. Sci. 43, (2001) 2023.
    [64] P. Scherrer, G64ott. Nachr. 2 (1918) 98.
    [65] G. G. Stoney, Proc. R. Soc. Lond. A82 (1909) 17
    [66] Cevat Sarioglu, Surf. Coat. Technol. 201 (2006) 707.
    [67] D.K. Owens and R.C. Wendt, J. Appl. Polym. Sci., 13 (1969) 1741.
    [68] Y.P. Deng, Y.F. Guan, J.D. Fowlkes, S.Q. Wen, F.X. Liu,
    G.M. Pharr, P.K. Liaw, C.T. Liu, P.D. Rack, Intermetallics 15 (2007) 1208-1216
    [69] D.A. Jones, Principles and prevention of Corrosion, Second edition, Prentice Hall, NJ, 1996
    [70] S.W. Dean, Mater. Performance 26 (1987) 51
    [71] H. Uchida, S. Inoue, K. Koterazawa, Mater. Sci. Eng. A 234-236 (1997) 649
    [72] T. Okamoto, M. Fushima, K. Takizawa, Corros. Eng. 45 (1996) 425
    [73] J.Y. Chen, G.P. Yu, J.H. Huang, Mater. Chem. Phys. 65 (2000) 310
    [74] Williams D. Nix, Mechanical Properties of Thin Films, http://www.imechanica.org/node/530 , (2005)
    [75] D. Burgreen, Elements of Thermal Stress Analysis, C.P. Press, New York, 1971, p. 462.
    [76] M.K. Tam, S.J. Pang, C.H. Shek, J. Non-Cryst. Solids., 353 (2007) 3596-3599
    [77] J.H. Huang, F.Y. Ouyang, G.P. Yu, Surf. Coat. Technol., 201 (1007) 7043-7053
    [78] Y.H. Yoo, S.H. Lee, J.G. Kim, J.S. Kim, C. Lee, J. Alloys Compd.,461 (2008) 304-311
    [79] A.P. Wan, X.C. Chang, W.L. Hou, J.Q. Wang, Corros. Sci., 49 (2007) 2628-2635
    [80] S. Hiromoto, A.P. Tsai, M. Sumita, T. Hanawa, Corros. Sci., 42 (2000)2167-2185

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE