研究生: |
林佳潔 Lin, Chia-Chieh |
---|---|
論文名稱: |
二氧化鈦氣凝膠在光催化分解水產氫之應用 Application of TiO2 Aerogels in Photocatalytic Water Splitting for Hydrogen Production |
指導教授: |
呂世源
Lu, Shih-Yuan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 水分解 、光催化 、二氧化鈦 、氣凝膠 、氫氣 |
外文關鍵詞: | water splitting, photocatalysis, TiO2, aerogel, hydrogen |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
光解水產氫反應是一種異相反應,而反應關鍵在於觸媒與反應物的表面反應,因此研究大多傾向於製備高比表面積觸媒使反應接觸面積增加。本研究首次嘗試以二氧化鈦氣凝膠作為水分解產氫反應的光觸媒。利用溶膠-凝膠法製備濕凝膠,經過二氧化碳超臨界流體萃取乾燥後,取得二氧化鈦氣凝膠。由於氣凝膠擁有以下特性:1. 高比表面積可提高表面反應機會;2. 完整連續性三維立體網狀結構,可使光生電荷載子易於表面移動;3. 中孔洞結構有利於反應物以及產物進出。本研究比較氣凝膠與水熱法製備之二氧化鈦奈米晶粒以及商用P25二氧化鈦之間的產氫效率。利用XRD、BET、TEM及DLS檢測觸媒晶相、比表面積、孔洞體積、表面結構以及分散於水中聚集時團簇大小,藉以解釋實驗結果。
研究系統為甲醇水溶液,其中甲醇為系統中的犧牲劑,於400 W 高壓汞燈照射下進行反應,平均光照功率密度為0.24 mW/cm2。反應溫度為20℃時,二氧化鈦氣凝膠產氫效率為6.4 μmol/g h,相較於另外兩種二氧化鈦光觸媒,P25(0.9 μmol/g h)及水熱法合成之奈米晶粒(1.9 μmol/g h)產氫速率高於2~6倍。另外,電化學交流阻抗光譜(electrochemical impedance spectroscopy,EIS)圖中顯示二氧化鈦氣凝膠有效分離光生電子電洞對以及在固液界面上發生快速電荷轉移。改變反應溫度時產氫速率隨溫度上升而增加,氣凝膠在50℃時產氫效率可達45 μmol/g h。根據阿瑞尼氏(Arrhenius)方程式,簡化水分解反應為0級反應,求得氣凝膠反應活化能為50.9 kJ/mole。利用多元醇還原法負載助觸媒鉑,其中負載量為還原時前驅物溶液中鉑與二氧化鈦氣凝膠重量比例為0.5 %時,產氫速率提昇約50倍。負載鉑之氣凝膠反應活化能為13.2 kJ/mole;可知助觸媒鉑提供另一種的反應途徑,有效降低活化能。
另一研究重點為比較不同負載助觸媒鉑的方式:多元醇還原法及含浸-鍛燒-還原法。助觸媒分散性會決定反應活性位的多寡進而影響反應速率,研究顯示含浸-鍛燒-還原法產氫速率可達到288.7 μmol/g h,此時助觸媒負載量為含浸步驟中,前驅物溶液的鉑與二氧化鈦氣凝膠重量比例為0.05 %,與多元醇還原法負載0.5 wt.%的鉑產氫速率相近。此負載量的差異是由於含浸-鍛燒-還原法所製備的鉑顆粒較小且較為分散。
The key point in water splitting as a heterogeneous reaction is the surface reaction between the catalyst and reactant. In order to enhance the reaction at the interface, there have been many efforts made on increasing the surface area of the catalysts. We first used TiO2 aerogels prepared with a sol-gel process and subsequent supercritical fluid drying, as the photocatalyst in water splitting. The high surface area and 3-D connected pore structure of large porosity are the advantages of aerogels for serving as the photocatalysts. We compared the hydrogen production efficiencies of aerogels, commercial P25, and TiO2 nanoparticles prepared with a hydrothermal process. The properties of these catalysts were characterized with XRD, BET, TEM, and DLS.
The photocatalytic water splitting reaction was carried out in a methanol solution under a 400 W Hg light source for 8 hours. The methanol served as the sacrificial agent. The hydrogen evolution rate of the TiO2 aerogels was 6.4 μmol/g h, which was six times and twice of those achieved by P25 (0.9 μmol/g h) and TiO2 nanoparticle (1.9 μmol/g h), respectively. The results of EIS (Electrochemical Impedance Spectroscopy) Nyquist plot indicated that a more effective separation of photogenerated electron-hole pairs, and faster interfacial charge transfer to the reactant occurred in the TiO2 aerogel system. The activation energy of the reaction in the aerogel system was determined with the Arrhenius equation to be 50.9 kJ/mole, assuming a zeroth order kinetics for the photocatalytic reaction. We raised the hydrogen production rate from 6.4 μmol/g h to 287 μmol/g h by incorporating Pt nanoparticles as an assistant catalyst, by a polyol process based on 0.5 wt% Pt. The activation energy determined for the Pt loaded TiO2 arogel was 13.2 kJ/mole, much reduced from the plain TiO2 arogel case. The result showed that the assistant catalyst indeed provides another reaction path to lower the activation energy.
Another part of this research focused on the ways of loading Pt – polyol process and immersion-calcination-reduction process. We found that the immersion-calcination-reduction process achieved the same level of hydrogen evolution rate by using a much lower concentration of starting Pt, 0.05 wt. % Pt in this case. The result may be due to better dispersion and smaller particle size of the Pt nanoparticle realized in the immersion-calcination-reduction process.
Abe R., Sayama K., and Sugihara H., “ Development of New Photocatalytic Water Splitting into H2 and O2 using Two Different Semiconductor Photocatalysts and a Shuttle Redox Mediator IO3-/I- ,” J. Phys. Chem. B, 109, pp 16052-16061 (2005)
Banerjee S., Mohapatra S. K., Das P. P., and Misra M., "Synthesis of Coupled Semiconductor by Filling 1D TiO2 Nanotubes with CdS," Chem. Mater., 21, pp 6784-6791 (2008)
Cao Y., Chen L., Zhu J., Liu Y. M., Li H. X., He H. Y., Dai W. L., Fan K.N., “ Photocatalytic activity of epoxide sol–gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying,” J. Molecular Catal. A-Chemical, 255, pp. 260-268 (2006)
Chen X. and Mao S. S., “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,” Chem. Rev., 107, pp 2891-2959 (2007)
Dagan G. and Tomkiewicz M., “Titanium Dioxide Aerogel for Photocatalytic Decontamination of Aquatic Environments,” J. Phys. Chem., 97, 49, pp 12651-12655 (1993)
Domen K., Maeda K., Xiong A., Yoshinaga T., Ikeda T., Sakamoto N., Hisatomi T., Takashima M., Lu D, Kanehara M., Setoyama T., and Teranishi T., “Photocatalytic Overall Water Splitting Promoted by Two Different Cocatalysts for Hydrogen and Oxygen Evolution under Visible Light,” Angewandte Chemie, 24, 122, pp 4190-4193 (2010)
Eder D., Motta M., and Windle A.H., “Iron-doped Pt–TiO2 nanotubes for photo-catalytic water splitting,” Nanotechnology, 20, pp. 1-6 (2009)
Fujishima A. and Honda K., “ Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, 238, pp 37-38 (1972)
Galinska A. and Walendziewski J., “Photocatalytic Water Splitting over Pt-TiO2 in the Presence of Sacrificial Reagents”, Energy & Fuels, 19, pp 1143-1147 (2005)
Gr□tzel M., “Photoelectrochemical Cells” Nature, 414, pp 338-344 (2001)
Ikuma Y. and Bessho H., “Effect of Pt Concentration on the Production of Hydrogen by a TiO2 Photocatalyst,” Int. J. Hydro. Ener., 32, pp 2689-2692 (2007)
Janek J., Hartmann P., Lee D. K., and Smarsly B. M., “Mesoporous TiO2: Comparison of Classical Sol-Gel and Nanoparticle Based Photoelectrodes for the Water Splitting Reaction”, ACSNANO (2010)
Karakitsou K. and Verykios X. E., “Definition of the Intrinsic Rate of Photocatalytic Cleavage of Water over Pt-RuO2/TiO2 Catalysts.” J. catal., 152, pp 360-367 (1995)
Kato H. and Kudo A., “Visible-Light-Response and Photocatalytic Activities of TiO2 and SrTiO3 Photocatalysts Codoped with Antimony and Chromium,” J. Phys. Chem. B, 106, 5029 (2002)
Kondarides D. I ., Patsoura A., and Verykios X. E., “Enhancement of Photoinduced Hydrogen Production from Irradiated Pt/TiO2 Suspensions with Simultaneous Degradation of Azo-Dyes,” Appl. Catal. B: Environmental, 64, pp 171-179 (2006)
Kondo J. N., Noda Y., Lee B., and Domen K., “Synthesis of Crystallized Mesoporous Tantalum Oxide and Its Photocatalytic Activity for Overall Water Splitting under Ultraviolet Light Irradiation”, Chem. Mater, 20,16, pp 5361-5367 (2008)
Komarneni S., Li D., Newalkar B., Katsuki H., and Bhalla A. S., “Microwave-Polyol Process for Pt and Ag Nanoparticle,” Langmuir, 18, pp 5959-5962 (2002)
Kudo A., “Photocatalyst Materials for Water Splitting,” Catal. Surv. Asia, 7, 1, pp 31-38 (2003)
Kudo A., Kato H., and Tsuji I., “Strategies for the Development of Visible-Light-Driven Photocatalysts for Water Splitting,” Chem. Letter, 33, 12, pp 1534-1540 (2004)
Lin C.-J., Lu Y.-T., Hsieh C.-H., and Chiena S.-H., “Surface Modification of Highly Ordered TiO2 Nanotube Arrays for Efficient Photoelectrocatalytic Water Splitting.” Appl. Phy. Lett., 94, pp 113-102(2009)
Leng W.H., Zhang Z., Zhang J. Q., and Cao C. N., “Investigation of the Kinetics of a TiO2 Photoelectrocatalytic Reaction Involving Charge Transfer and Recombination through Surface States by Electrochemical Impedance Spectroscopy,” J. Phys. Chem. B, 109, 31, pp 15008-15023 (2005)
Ma H., Wang L., Chen L., Dong C., Yu W., Huang T., and Qian Y., “Pt Nanoparticles Deposited over Carbon Nanotubes for Selective Hydrogenation of Cinnamaldehyde.” Catal. Commum., 8, pp 452-456 (2007)
Mills A. and Hunte S. L., “An Overview of Semiconductor Photocatalysis,” J. Photoche. Photobiol. A: Chemistry, 108, pp 1-35 (1997)
Shaban Y. and Khan S. U. M., “Carbon Modified (CM)-n-TiO2 Thin Films for Efficient Water Splitting to H2 and O2 under Xenon Lamp Light and Natural Sunlight Illuminations,” J. Solid State Electrochemistry, 13, pp 1025–1036 (2009)
Shin H., Bae S. T. , Kim J. Y. , Jung H. S., and Hong K. S. , “Roles of MgO Coating Layer on Mesoporous TiO2/ITO Electrode in a Photoelectrochemical Cell for Water Splitting”, J. Phys. Chem.C, 112, pp 9937-9942 (2008)
Sun W., Zhang S., Liu Z., Wang C., and Mao Z., “Studies on the Enhanced Photocatalytic Hydrogen Evolution over Pt/PEG-Modified TiO2 Photocatalysts,” Int. J. Hydro. Ener., 33, pp 1112 – 1117 (2008)
Teng H. and Nian, J. N., “Hydrothermal Synthesis of Single-Crystalline Anatase TiO2 Nanorods with Nanotubes as the Precursor,” J. Phys. Chem. B, 110, pp 4193-4198 (2006)
Xie Y. C. and Tang Y. Q., “Spontaneous Monolayer Dispersion of Oxides and Salts onto Surfaces of Supports: Applications to Heterogeneous Catalysis”, Adv. in Catal., 37, pp 1-40 (1990)
Yang Y. Z., Chang C. H., and Idriss H., “Photo-Catalytic Production of Hydrogen form Ethanol over M/TiO2 Catalysts (M = Pd, Pt or Rh),” Appl. Catal. B: Environmental, 67, pp 217–222 (2006)
Yao H. C., Sieg M., and Plummer H. K. Jr., “Surface Interactions in the Pt/γ-Al2O3 System,” J. catal., 59, pp 365-374 (1979)
Yoshikawa S., Sreethawong T., and Suzuki Y., “Photocatalytic Evolution of Hydrogen over Mesoporous TiO2 Supported NiO Photocatalyst Prepared by Single-Step Sol–Gel Process with Surfactant Template.” Int. J. Hydro. Ener., 30, pp 1053-1062(2005)
Weber J.V., Malinowska B., Walendziewski J., Robert D., and Stolarski M., “Titania Aerogels: Preparation and Photocatalytic Tests,” Int. J. Photoenergy, 5, pp 147-152(2003)
Zhang L. W., Wang Y. J., Cheng H. Y., Yao W. Q., and Zhu Y. F., “Synthesis of Porous Bi2WO6 Thin Films as Efficient Visible-Light-Active Photocatalysts.” Adv. Mater., 20, pp 1–5(2008)
Zhang Z., Wang Y., Zhu Y., Zhang L., Vajtai R., Ci L., and Ajayan P. M., “Nanostructured VO2 Photocatalysts for Hydrogen Production,” ACSNano, 2, 7, pp 1492-1496 (2008)
李敦鈁、鄭菁、陳新益及鄒志剛, “光催化分解水體系和材料研究”, 化學進展, 4期 (2007)
林宛嫻, “熔膠凝膠法與固相法合成鉭酸鈉及其應用於紫外光分解水製氫之研究”, 國立成功大學化學工程學系碩論 (2007)
洪雅鈺, “二氧化鈦光觸媒產氫之研究”, 國立清華大學工程與系統科學研究所碩論, (2007)
徐米君, “製備較高比表面積之矽酸鋰於二氧化碳捕捉之應用”, 國立清學大學化學
工程研究所碩士論文 (2009)
許家勝與薛東峰,“利用可見光催化分解水製氫的研究進展”, 材料報導, (2006)
黃富昌, “土壤結構及化性對有機污染物吸/脫附特性之研究”, 國立中央大學環境工程研究所博士論文(2004)
鄭光煒, “前瞻能源技術-太陽能製氫技術”, 長庚大學校校訊, 58期 (2007)
魏得育, “二氧化矽氣凝膠與複合氣凝膠之製備與物理性質探討”, 國立清學化學工程研究所碩士論文 (2006)
蔡宗佑, “二氧化鈦光電極微結構對染料敏化太陽能電池效率之影響”, 國立清學化學工程研究所碩士論文 (2009)