簡易檢索 / 詳目顯示

研究生: 陳煜達
Chen, Yu-Da
論文名稱: 微腔體和生物物質的光散射和發射特性
Light Scattering and Emission Properties of Micro-Cavities and Biological Objects
指導教授: 張亞中
Chang, Yia-Chung
曾繁根
Tseng, Fan-Gang
口試委員: 李超煌
Lee, Chau-Hwang
魏培坤
Wei, Pei-Kuen
陳壁彰
Chen, Bi-Chang
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 114
中文關鍵詞: 橢圓偏振技術光致激發光影像式橢圓偏振技術散射光微共振腔體細胞
外文關鍵詞: Ellipsometry, Photoluminescence, MIE, Scattering, Microcavity, Cell
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 影像式橢圓偏振技術和光致激發光譜是我在這篇論文主要用來研究類六角形截面氧化鋅微米柱、腸癌細胞的藥物反應現象、裸光纖圓柱、矽微米求以及氧化鋅微米球的實驗工具。在第一項研究當中,各種規格的氧化鋅微米柱使用電子顯微鏡來做初步研究(包含內部半徑、邊圓角修飾、和傾斜程度)。我們使用光致激發光譜在可見光光譜(能量在1.77電子伏特到2.76電子伏特之間)來做量測,並且將實驗結果與使用一組完整基底內的格林函數推導出來的理論分析交叉比較來得到實際的結構資訊。
    在第二項研究當中,腸癌細胞的藥物反應透過探索橢圓儀在可見光範圍(波長從500奈米到750奈米)的特徵頻譜(Ψ和cos∆)作探討,並且在反射量測模式量測橢圓偏振影像(包含tanΨ、sin∆、s-和p-偏振反射率(Is和Ip)。橢圓偏振影像顯示出一些鏈波狀結構和尖銳的針尖結構,有可能是來自於腸癌細胞在服用藥物後,細胞內部所產生的共振腔電磁波或是細胞核直接產生的散射光。
    在第三項研究當中,裸光纖圓柱體的邊緣效應藉由光致激發光峰值強度在空間中的分布來做研究,同時也擷取橢圓偏振儀在三種工作模式(反射模式、垂直入社的散射模式、垂直收光的散射模式)所產生的橢圓偏振影像來瞭解來分析來自裸光纖圓柱體的直接反射訊號和散射光訊號。
    在第四項研究當中,矽微米球和氧化鋅微米球使用橢圓偏振系統加裝垂直方向電控奈米平移台來做研究。每當從第一個焦平面移動到第二十個焦平面的過程當中,微米球從外到內一層層的結構及共振資訊都能藉由橢圓偏振影像顯現出來。


    Microscopic Imaging Ellipsometry (MIE) and Photoluminescence (PL) are two system we introduced to discover scattering properties of hexagonal-like microrod, drug-treated colon cancer cell, bare fiber rod, silica microsphere, and ZnO microsphere.
    ZnO microrods of various sizes are fabricated and their individual geometric information (including the inner radius, edge profile modification, and tilt angle) are characterized via scanning electron microscopy (SEM). The Photoluminescence (PL) spectra in visible range (with energies between 1.77eV and 2.76eV) are compared with theoretical simulation based on Green function calculation within a nearly complete set of basis functions.
    Drug-treated colon cancer cell is investigated via the spectra of characteristic parameters (Ψ and cos∆) in the visible (with wavelength between 500 nm and 750 nm) and related microscopic images, including tanΨ, sin∆, s- and p-polarized reflectances (Is and Ip) in specular-reflection mode. The MIE images revealed ripple-like outer diffraction patterns and sharp spikes related to cavity resonance modes or light scattering from nucleus inside single colon cells, which changed significantly after drug treatment.
    Bare fiber rod is explored with its edge effect by PL peak count distribution and MIE spectra and images in three modes (specular, off-specular: normal detection, and off-specular: normal incidence) were investigated to realize the signal from both direct reflection and scattering emission.
    Silica microsphere and ZnO microsphere are studied via MIE system with a z-axis nano-stage. As moving from the focal plane 1 to the focal plane 20, MIE images were captured layer by layer to understand their resonances and morphology from top of microsphere toward inside microsphere.

    摘要………………………………………………………………………………………………………………………………………………………………… ii Abstract……………………………………………………………………………………………………………………………………………………… iii Acknowledgements………………………………………………………………………………………………………………………………… iv Chapter 1. Introduction…………………………………………………………………………………………………………… 1 1.1 Photoluminescence of Zinc Oxide………………………………………………………… 1 1.2 Ellipsometry…………………………………………………………………………………………………………… 1 Chapter 2. Microscopic Imaging Ellipsometry……………………………………………………… 3 2.1 System Design………………………………………………………………………………………………………… 3 2.2 Data Processing Based on Jones’ Matrices and Fourier Analysis……………………………………………………………………………………………………………………… 6 Chapter 3. Emission Spectra of Hexagonal Zinc Oxide Microrods Due to Resonant Modes…………………………………………………………………………………… 10 3.1 Sample Preparation…………………………………………………………………………………………… 11 3.2 SEM Characterization……………………………………………………………………………………… 11 3.3 PL Emission Spectra………………………………………………………………………………………… 16 3.4 Theoretical Analysis……………………………………………………………………………………… 17 3.4.1 Green Function of Cylindrical Microrods………………………… 17 3.4.2 Green Function of Rods with Hexagonal Cross- Section……………………………………………………………………………………………………………… 21 3.4.3 Emission Intensity………………………………………………………………………………… 23 3.5 Comparison between Theory and Experiment………………………………… 25 3.5.1 Best Fitting Results…………………………………………………………………………… 25 3.5.2 Analysis of WGM Analysis………………………………………………………………… 28 3.6 Conclusion………………………………………………………………………………………………………………… 32 Chapter 4. Spectroscopic Microscale Imaging Ellipsometry for Studying Effects of Drug Treatment in Colon Cancer Cells……………………………………………………………………………………………………………………………… 34 4.1 Sample Preparation…………………………………………………………………………………………… 35 4.2 Experimental Results and Analysis…………………………………………………… 37 4.2.1 Ψ and Δ Spectra………………………………………………………………………………………… 39 4.2.2 MIE Images……………………………………………………………………………………………………… 43 4.3 Conclusion………………………………………………………………………………………………………………… 48 Chapter 5. Scattering Properties of a Bare Fiber Rod……………………………… 50 5.1 Theoretical Derivation………………………………………………………………………………… 50 5.1.1 S-polarized Emission…………………………………………………………………………… 51 5.1.2 P-polarized Emission…………………………………………………………………………… 55 5.1.3 Calculate Ψ and Δ Spectra……………………………………………………………… 60 5.2 PL Emission near Fiber End……………………………………………………………………… 61 5.2.1 Experimental Design……………………………………………………………………………… 61 5.2.2 PL Peak Analysis……………………………………………………………………………………… 62 5.3 MIE Images of a Bare Fiber Rod…………………………………………………………… 66 5.3.1 Measurement Setup…………………………………………………………………………………… 66 5.3.2 Specular MIE Spectra and Images……………………………………………… 67 5.3.3 Off-Specular MIE Spectra and Images for Normal Detection Case…………………………………………………………………………………………… 70 5.3.4 Off-Specular MIE Spectra and Images for Normal Incidence Case…………………………………………………………………………………………… 74 5.4 Conclusion………………………………………………………………………………………………………………… 77 Chapter 6. Scattering Images at Brewster’s Angle for Silica Microsphere and ZnO Microsphere via Microscopic Imaging Ellipsometry……………………………………………………………………………………… 78 6.1 Sample Preparation…………………………………………………………………………………………… 78 6.2 Calculate Brewster’s Angle……………………………………………………………………… 79 6.3 Measurement Setup……………………………………………………………………………………………… 80 6.4 MIE Image of Silica Microsphere………………………………………………………… 81 6.4.1 Specular Images………………………………………………………………………………………… 81 6.4.2 Off-Specular Images……………………………………………………………………………… 90 6.5 MIE Image of ZnO Microsphere………………………………………………………………… 97 6.5.1 Ψ and Δ Spectra………………………………………………………………………………………… 97 6.5.2 Specular Images………………………………………………………………………………………… 98 6.6 Conclusion…………………………………………………………………………………………………………………100 Chapter 7. Conclusion and Future Work………………………………………………………………………101 References…………………………………………………………………………………………………………………………………………………102 Appendix………………………………………………………………………………………………………………………………………………………112

    1. Y.-D. Chen, T. H.-B. Ngo, Y.-C. Chang, D.-J. Lin, and H.-C. Hsu,
    “Emission Spectra of Hexagonal Zinc Oxide Microrods Due to
    Resonant Modes,” J. Opt. Soc. Am. B 35, 2228-2236, 2018.
    2. Y.-D. Chen, C.-H. Wu, H. Y. Hsu, D.-J. Lin, H.-C. Hsu, M. I.
    Khaleel, Y.-C. Chang, and H.-C. Wu., “Spectroscopic Microscale
    Imaging Ellipsometry for Studying Effects of Drug Treatment in
    Colon Cancer Cells,” IJPERA., 2019 (Accepted).
    3. K. Vanheusden, C. H. Seager, W. T. Warren, D. R. Tallant, and J.
    A. Voigt, “Correlation Between Photoluminescence and Oxygen
    Vacancies in ZnO Phosphors,” Applied physics letters, 68(3), 403-
    405, 1996.
    4. Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S.
    Doğan, V. Avrutin, S.-J. Cho, and H. A. Morkoç, “Comprehensive
    Review of ZnO Materials and Devices,” Journal of applied physics,
    98(4), 11, 2005.
    5. J. Čížek, J. Valenta, P. Hruška, O. Melikhova, I. Procházka, M.
    Novotný, and J. Bulíř, “Origin of Green Luminescence in
    Hydrothermally Grown ZnO Single Crystals,” Applied Physics
    Letters, 106(25), 251902, 2015.
    6. Q. Li, Z. Kang, B. Mao, E. Wang, C. Wang, C. Tian, and S. Li,
    “One-Step Polyoxometalate-Assisted Solvothermal Synthesis of ZnO
    Microspheres and Their Photoluminescence Properties,” Materials
    Letters, 62(16), 2531-2534, 2008.
    7. R. S. Moirangthem, P.-J. Cheng, P. C.-H. Chien, T. H. Ngo, S.-W.
    Chang, C.-H. Tien, and Y. C. Chang, “Optical Cavity Modes of a
    Single Crystalline Zinc Oxide Microsphere,” Optics Exp., 21, 3010–
    3020, 2013.
    8. Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered
    Semiconductor ZnO Nanowire Arrays and Their Photoluminescence
    Properties,” Applied Physics Letters, 76(15), 2011-2013, 2000.
    9. Y.-D. Chen, H. Y. Hsu, M. I. Khaleel, Y.-C. Chang, C.-H. Wu, and
    H.-C. Wu, “Study of Biological Reaction in Cancer Cell with
    Spectroscopic Imaging Ellipsometry,” Proceedings of SPIE
    Conference on Optics+Photonics 992505-992513, 2016.
    10. Y.-C. Chang, H.-Y. Xie, A. F.-C. Hsiao, Y.-D. Chen, and T. H.-B.
    Ngo, “Optical Sensing of Nanoscale Objects via Computation-Aided
    Microscopic Imaging Ellipsometry,” Sci. Lett., 5, 229, 2016.
    11. G. Jin, P. Tengvall, I. Lundstro¨m, and H. Arwin, “A Biosensor
    Concept Based on Imaging Ellipsometry for Visualization of
    Biomolecular Interactions,” Anal. Biochem. 232, 69-72 1995.
    12. W. Wang, C. Qi, T.-F. Kang, Y. Niu, G. Jin, Y.-Q. Ge, and Y.
    Chen, “Analysis of The Interaction Between Tropomyosin Allergens
    and Antibodies Using a Biosensor Based on Imaging Ellipsometry,”
    Anal. Chem. 85, 4446-4452, 2013.
    13. I. An, “Application of Imaging Ellipsometry to The Detection of
    Latent Fingermarks,” Forensic Sci. Int. 253, 28-32, 2015.
    14. Z.-H. Wang and G. Jin, “Covalent Immobilization of Proteins for
    The Biosensor Based on Imaging Ellipsometry,” J. Immunol Methods
    285, 237-243, 2015.
    15. H. Sun, C. Qi, Y. Niu, T. Kang, Y. Wei, G. Jin, X. Dong, C. Wang,
    and W. Zhu, “Detection of Cytomegalovirus Antibodies Using a
    Biosensor Based on Imaging Ellipsometry,” PLoS ONE 10(8):
    e0136253, 2015.
    16. M. M. B. Nielsen and A. C. Simonsen, “Imaging Ellipsometry of
    Spin-Coated Membranes: Mapping of Multilamellar Films, Hydrated
    Membranes, and Fluid Domains,” Langmuir 29, 1525-1532, 2013.
    17. P. De Beule and A. Miranda, "Anisotropy Imaging of Supported
    Lipid Bilayers via Spectroscopic Imaging Ellipsometry," in Optics
    in the Life Sciences, OSA Technical Digest (online) (Optical
    Society of America), paper JT3A.42, 2015.
    18. Z. H. Wang and G. Lin, “A Label-Free Multisensing Immunosensor
    Based on Imaging Ellipsometry,” Anal. Chem. 75, 6119-6123, 2003.
    19. L. Asinovski, D. Beaglehole, and M. T. Clarkson, “Imaging
    Ellipsometry: Quantitative Analysis,” Phys. Status Solidi A 205,
    764–771, 2008.
    20. Note that we have adopted the notation in physics community,
    which leads to a flip of sign in Δ in comparison to the notation
    used in optics community.
    21. C. Qi, Y. Lin, J. Feng, Z.-H. Wang, C.-F. Zhu, Y.-H. Meng, X.-Y.
    Yan, L.-J. Wan, and G. Jin, “Phage M13KO7 Detection with Biosensor
    Based on Imaging Ellipsometry and AFM Microscopic Confirmation,”
    Virus Res. 140 79-84, 2009.
    22. G. Jin, Y.-H. Meng, L. Liu, Y. Niu, S. Chen, Q. Cai, and T.-J.
    Jiang, “Development of Biosensor Based on Imaging Ellipsometry and
    Biomedical Applications,” Thin Solid Films 519 2750-2757, 2011.
    23. S. Munteanu, N. Garraud, J. P. Roger, F. Amiot, J. Shi, Y. Chen,
    C. Combellas, and F. Kanoufi, “In Situ, Real Time Monitoring of
    Surface Transformation: Ellipsometric Microscopy Imaging of
    Electrografting at Microstructured Gold Surfaces,” Analytical
    Chemistry 85 1965-1971, 2013.
    24. J.-Y. Fan, H.-X. Li, and F.-Q. Wu, “A Study on Transmitted
    Intensity of Disturbance for Air-Spaced Glan-Type Polarizing
    Prisms,” Optics Communications 223 11–16, 2003.
    25. Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, ” Ordered
    Semiconductor ZnO Nanowire Arrays and Their Photoluminescence
    Properties,” Applied Physics Letters, 76(15), 2011-2013, 2000.
    26. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber,
    “Highly Polarized Photoluminescence and Photodetection from Single
    Indium Phosphide Nanowires,” Science, 293(5534), 1455-1457, 2001.
    27. H. B. Dias, M. I. B. Bernardi, M. A. D. S. Ramos, T. C. Trevisan,
    T. M. Bauab, A. C. Hernandes, and A. N. de Souza Rastelli, “Zinc
    Oxide 3D Microstructures As an Antimicrobial Filler Content for
    Composite Resins,” Microscopy Research and Technique, 80(6), 634-
    643, 2017.
    28. Z. Dong, X. Lai, J. E. Halpert, N. Yang, L. Yi, J. Zhai, D. Wang,
    Z. Tang, and L. Jiang, “Accurate Control of Multishelled ZnO
    Hollow Microspheres for Dye‐Sensitized Solar Cells with High
    Efficiency,” Advanced materials, 24(8), 1046-1049, 2012.
    29. C. X. He, B. X. Lei, Y. F. Wang, C. Y. Su, Y. P. Fang, and D. B.
    Kuang, “Sonochemical Preparation of Hierarchical ZnO Hollow
    Spheres for Efficient Dye‐Sensitized Solar Cells,” Chemistry-A
    European Journal, 16(29), 8757-8761, 2010.
    30. X. Kang, C. Jia, Z. Wan, J. Zhuang, and J. Feng, “A novel Tri-
    Layered Photoanode of Hierarchical ZnO Microspheres on 1D ZnO
    Nanowire Arrays for Dye-Sensitized Solar Cells,” RSC Advances,
    5(22), 16678-16683, 2015.
    31. G. Yang, Q. Wang, C. Miao, Z. Bu, and W. Guo, “Enhanced
    Photovoltaic Performance of Dye-Sensitized Solar Cells Based on
    ZnO Microrod Array/TiO 2 Nanoparticle Hybrid Films,” Journal of
    Materials Chemistry A, 1(9), 3112-3117, 2013.
    32. J. J. Cole, X. Wang, R. J. Knuesel, and H. O. Jacobs,
    “Integration of ZnO Microcrystals with Tailored Dimensions Forming
    Light Emitting Diodes and UV Photovoltaic Cells,” Nano letters,
    8(5), 1477-1481, 2008.
    33. S. Okamoto, Y. Minowa, and M. Ashida, “White-Light Lasing in ZnO
    Microspheres Fabricated by Laser Ablation,” In Oxide-based
    Materials and Devices III (Vol. 8263, p. 82630K), International
    Society for Optics and Photonics, 2012.
    34. K. Okazaki, T. Shimogaki, K. Fusazaki, M. Higashihata, D.
    Nakamura, N. Koshizaki, and T. Okada, “Ultraviolet Whispering-
    Gallery-Mode Lasing in ZnO Micro/Nano Sphere Crystal,” Applied
    Physics Letters, 101(21), 211105, 2012.
    35. J. Dai, C. X. Xu, and X. W. Sun, “ZnO‐Microrod/p‐GaN
    Heterostructured Whispering‐Gallery‐Mode Microlaser Diodes,”
    Advanced Materials, 23(35), 4115-4119, 2011.
    36. H. Dong, Y. Liu, J. Lu, Z. Chen, J. Wang, and L. Zhang, “Single-
    Crystalline Tower-Like ZnO Microrod UV Lasers,” Journal of
    Materials Chemistry C, 1(2), 202-206, 2013.
    37. J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering
    Gallery-Mode Lasing in ZnO Microrods at Room Temperature,” Applied
    physics letters, 95(24), 241110, 2009.
    38. J. Dai, C. X. Xu, R. Ding, K. Zheng, Z. L. Shi, C. G. Lv, and Y.
    P. Cui, “Combined Whispering Gallery Mode Laser from Hexagonal ZnO
    Microcavities,” Applied physics letters, 95(19), 191117, 2009.
    39. G. Y. Zhu, C. X. Xu, Y. Lin, Z. L. Shi, J. T. Li, T. Ding, Z. S.
    Tian, and G. F. Chen, “Ultraviolet electroluminescence from
    Horizontal ZnO Microrods/GaN Heterojunction Light-Emitting Diode
    Array,” Applied Physics Letters, 101(4), 041110, 2012.
    40. K. S. Kim, S. M. Kim, H. Jeong, M. S. Jeong, and G. Y. Jung,
    “Enhancement of Light Extraction Through the Wave‐Guiding Effect
    of ZnO Sub‐microrods in InGaN Blue Light‐Emitting Diodes,”
    Advanced Functional Materials, 20(7), 1076-1082, 2010.
    41. Z. Guo, H. Li, L. Zhou, D. Zhao, Y. Wu, Z. Zhang, C. Li, and J.
    Yao, “Large‐Scale Horizontally Aligned ZnO Microrod Arrays with
    Controlled Orientation, Periodic Distribution as Building Blocks
    for Chip‐in Piezo‐Phototronic LEDs,” small, 11(4), 438-445, 2015.
    42. X. Lu, H. Zhang, Y. Ni, Q. Zhang, and J. Chen, “Porous Nanosheet-
    Based ZnO Microspheres for The Construction of Direct
    Electrochemical Biosensors,” Biosensors and bioelectronics, 24(1),
    93-98, 2008.
    43. X. Feng, Y. Liu, Q. Kong, J. Ye, X. Chen, J. Hu, and Z. Chen,
    “Direct Electrochemistry of Myoglobin Immobilized on Chitosan-
    Wrapped Rod-Constructed ZnO Microspheres and Its Application to
    Hydrogen Peroxide Biosensing,” Journal of Solid State
    Electrochemistry, 14(6), 923-930, 2010.
    44. Y. Zhao, X. Yan, Z. Kang, P. Lin, X. Fang, Y. Lei, S. Ma, and Y.
    Zhang, “Highly Sensitive Uric Acid Biosensor Based on Individual
    Zinc Oxide Micro/Nanowires,” Microchimica Acta, 180(9-10), 759-
    766, 2013.
    45. C. Xia, N. Wang, L. Lidong, and G. Lin, “Synthesis and
    Characterization of Waxberry-Like Microstructures ZnO for
    Biosensors,” Sensors and Actuators B: Chemical, 129(1), 268-273,
    2008.
    46. T. L. Wu, T. H. Meen, S. M. Chao, L. W. Ji, L. C. Shih, C. H.
    Huang, J. K. Tsai, and T. C. Wu, “Application of ZnO Micro Rods on
    The Composite Photo-Electrode of Dye Sensitized Solar Cells,”
    Microsystem Technologies, 1-5, 2017.
    47. Q. Zhu, F. Qin, J. Lu, Z. Zhu, H. Nan, Z. Shi, Z. Ni, and C. Xu,
    “Synergistic Graphene/Aluminum Surface Plasmon Coupling for Zinc
    Oxide Lasing Improvement,” Nano Research, 1-9, 2017.
    48. G. Zhu, “Investigation of The Mode Structures of Multiphoton
    Induced Ultraviolet Laser in a ZnO Microrod,” Journal of
    Nanotechnology, 2017.
    49. F. Alam, and K. Balani, “Role of Silver/Zinc Oxide in Affecting
    De-Adhesion Strength of Staphylococcus Aureus on Polymer
    Biocomposites,” Materials Science and Engineering: C, 75, 1106-
    1114, 2017.
    50. C. Czekalla, T. Nobis, A. Rahm, B. Cao, J. Zúñiga‐Pérez, C.
    Sturm, R. Schmidt-Grund, M. Lorenz, and M. Grundmann, “Whispering
    Gallery Modes in Zinc Oxide Micro‐and Nanowires,” physica status
    solidi (b), 247(6), 1282-1293, 2010.
    51. H. Dong, Y. Liu, S. Sun, Z. Chen, and L. Zhang, “Optical
    Modulation in Microsized Optical Resonators with Irregular
    Hexagonal Cross-Section,” Journal of Materials Chemistry C, 2(42),
    8976-8982, 2014.
    52. J. Wiersig, “Hexagonal Dielectric Resonators and Microcrystal
    Lasers,” Physical Review A, 67(2), 023807, 2003.
    53. C. F. Du, C. H. Lee, C. T. Cheng, K. H. Lin, J. K. Sheu, and H.
    C. Hsu, "Ultraviolet/Blue Light-Emitting Diodes Based on Single
    Horizontal ZnO Microrod/GaN Heterojunction", Nanoscale Research
    Letters 9, 446, 2014.
    54. C. T. Tai, “Dyadic Green Functions in Electromagnetic Theory”,
    2nd ed. IEEE, (New York, 1993).
    55. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals Series and
    Products, 2nd ed., (Academic Press, New York, 2007) ; 8.477.
    56. C. F. Bohren and D. R. Huffman, “Absorption and Scattering of
    Light by Small Particles” (Wiley, New York, 1983).
    57. P. W. Barber and S. C. Hill, “Light Scattering by Particles:
    Computational Methods” (World Scientific, Sigapore, 1990).
    58. V. A. Markel, “Introduction to The Maxwell Garnett Approximation:
    Tutorial,” J. Opt. Soc. Am. A 33(7), 1244–1256, 2016.
    59. A. R. Kherlopian, T. Song, Q. Duan, M. A. Neimark, M. J. Po, J.
    K. Gohagan, and A. F. Laine, “A Review of Imaging Techniques for
    Systems Biology,” Bmc. Syst. Biol. 2 74, 2008.
    60. M. A. A. Neil, R. Juskaitis, and T. Wilson, “Method of Obtaining
    Optical Sectioning by Using Structured Light in a Conventional
    Microscope,” Opt. Lett. 22 1905-1907, 1997.
    61. N. de Jonge and F. M. Ross, “Electron Microscopy of Specimens in
    Liquid,” Nat. Nanotechnol. 6 695-704, 2011.
    62. P. K. Hansma, J. P. Cleveland, M. Radmacher, D. A. Walters, P. E.
    Hillner, M. Bezanilla, M. Fritz, D. Vie, and H. G. Hansma,
    “Tapping Mode Atomic-Force Microscopy in Liquid,” Appl. Phys.
    Lett. 64 2454-2456, 1994.
    63. D. Ling, M. J. Hackett, and T. Hyeon, “Cancer Imaging Lighting up
    Tumours,” Nat. Mater. 13 122-124, 2014.
    64. J. V. Frangioni, “New Technologies for Human Cancer Imaging,” J.
    Clin. Oncol. 26 4012-4021, 2008.
    65. M. Gabriel, C. Decristoforo, D. Kendler, G. Dobrozemsky, D.
    Heute, C. Uprimny, P. Kovacs, E. V. Guggenberg, R. Bale, and I. J.
    Virgolini, “68Ga-DOTA-Tyr3-octreotide PET in Neuroendocrine
    Tumors: Comparison with Somatostatin Receptor Scintigraphy and
    CT,” J. Nucl. Med. 48 508-518, 2007.
    66. K. Golman, M. Lerche, R. Pehrson, and J. H. Ardenkjaer-Larsen,
    “Metabolic Imaging by Hyperpolarized 13C Magnetic Resonance
    Imaging for In Vivo Tumor Diagnosis,” Cancer Res. 66 10855-10860,
    2006.
    67. T. Jonischkeit, U. Bommerich, J. Stadler, and K. Woelk,
    “Generating Long-Lasting 1H and 13C Hyperpolarization in Small
    Molecules with Parahydrogen-Induced Polarization,” J. Chem. Phys.
    124 201109, 2006.
    68. J.-H. Park, H.-J. Cho, H. Y. Yoon, I.-S. Yoon, S.-H. Ko, J.-S.
    Shim, J.-H. Cho, J. H. Park, K. Kim, I. C. Kwon, and D.-D. Kim,
    “Hyaluronic Acid Derivative-Coated Nanohybrid Liposomes for Cancer
    Imaging and Drug Delivery,” J. Control. Release 174 98-108, 2014.
    69. J. V. Jokerst, A. J. Cole, D. Van de Sompel, and S. S. Gambhir,
    “Gold Nanorods for Ovarian Cancer Detection with Photoacoustic
    Imaging and Resection Guidance via Raman Imaging in Living Mice,”
    ACS nano 6 10366-10377, 2012.
    70. X. Wu, M. Wu, and J. X. Zhao, “Recent Development of Silica
    Nanoparticles as Delivery Vectors for Cancer Imaging and Therapy,”
    Nanomed.-Nanotechnol. 10 297-312, 2014.
    71. E. Passaglia, R. R. Stromberg, and J. Kruger, “Ellipsometry in
    the Measurement of Surfaces and Thin Films,” Symposium Proceedings
    256, 1964.
    72. D. A. Holmes, “On the Calculation of Thin Film Refractive Index
    and Thickness by Ellipsometry,” Appl. Opt. 6 168-169, 1967.
    73. D. E. Aspnes and J. B. Theeten, “Investigation of Effective-
    Medium Models of Microscopic Surface-Roughness by Spectroscopic
    Ellipsometry,” Phys. Rev. B 20 3292-3302, 1979.
    74. G. Lucovsky and M. J. Mantini, “Low-Temperature Growth of Silicon
    Dioxide Films - a Study of Chemical Bonding by Ellipsometry and
    Infrared-Spectroscopy,” J. Vac. Sci. Technol. B 5 530-537, 1987.
    75. V. Meera and G. S. Setlur, “Ellipsometry of Graphene on a
    Substrate,” J. Appl. Phys. 107, 2010.
    76. C. Yim, M. O'Brien, N. McEvoy, S. Winters, I. Mirza, J. G.
    Lunney, and G. S. Duesberg, “Investigation of the Optical
    Properties of MoS2 Thin Films Using Spectroscopic Ellipsometry,”
    Appl. Phys. Lett. 104 103114, 2014.
    77. C. H. Wu, Y. H. Kuo, R. L. Hong, and H. C. Wu, “α-Enolase-Binding
    Peptide Enhances Drug Delivery Efficiency and Therapeutic Efficacy
    Against Colorectal Cancer,” Science Translational Medicine 7,
    290ra91, 1-14, 2015.

    QR CODE