簡易檢索 / 詳目顯示

研究生: 徐仲彥
Hsu, Chung-Yen
論文名稱: 在垂直向上環形管流下利用雙探針法量測氣泡空泡分率及介面面積濃度之實驗研究
Measurement of Interfacial Area Concentration and Void Fraction with Double-sensor Probe in a Vertical Upward Annular Pipe
指導教授: 白寶實
Pei, Bau-Shei
林志宏
Lin, Chih-Hung
口試委員: 曾永信
Tseng, Yung-Shin
馮玉明
Ferng, Yuh-Ming
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 86
中文關鍵詞: 雙相流氣泡流雙探針法介面面積濃度
外文關鍵詞: Interfacial area concentration, Local void fraction, Double senor probe, Bubbly flow
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙相流現象廣泛於運用在各類工程包含化工、能源等其他工業領域,在核工領域實際運用於燃料棒不正常升溫,燃料棒溫度上升至沸騰溫度,壁面溫度與水因沸騰產生氣泡,周圍沸騰狀態對於燃料棒與冷卻水之情況,本實驗室亦致力於採用計算流體力學(Computational Fluid Dynamics,CFD)模擬程式,模擬各類存在於工業之雙相流現象,並藉由實驗數據去修正模擬結果,此方法亦被國際間接受。
    本論文著重在實驗部分,目前雙相流現象為難以利用模擬程式預測,故製作此實驗採即有效數據,觀察環形管內之氣泡。除了使用攝影機以影像方式紀錄氣泡之破裂與結合影像,採用雙探針量測方法(Double-sensor probe),利用電子訊號的方式加以處理,可得到徑向分布的各點局部空泡分率(Local void fraction)、氣泡大小(Bubble diameter)、表象速度(j_f和j_g),進而計算出介面面積濃度(Interfacial area concentration),並與攝影機記錄互相比較、驗正,為CFD雙相流模擬的基準(Benchmark),作為本實驗室模擬研究資料庫,並修正模擬結果。


    Bubbly flow phenomenon is the most common flow pattern in nuclear plant system. In this paper, the experiment was designed to observe the fluid phenomenon surrounding nuclear rod bundle, and developed the measurement method in an annulus pipe measured by double sensor probe.
    In recent years, double sensor probe is one of the measuring techniques for the bubbly flow. It can measure local void fraction and bubble velocity. After mathematical statistical calculation, interfacial area concentration and sauter mean diameter were obtained. A total of 9 data consisted of four superficial liquid velocities, 0.31, 0.41, 0.51, and 0.61 m/s, and four superficial liquid velocities, 0.02, 0.03, 0.05, and 0.13 m/s. The obtained data will be compared and used to develop to the two phase model for Computational Fluid Dynamics

    目錄 摘要 I ABSTRACT II 圖目錄 V 表目錄 IX 緒論 1 研究背景 1 研究目的 1 第1章 文獻回顧 3 第2章 實驗重要架構 11 2.1 環路圖 11 2.2 重要主件設計 13 2.2.1 測試管構造(Test section) 13 2.2.2 量測段構造(Measurement section) 16 2.2.3 混合槽(Mixing chamber) 19 2.2.4 出口排水及固定中心圓棒設計(Outlet and Center rod design) 24 第3章 量測儀器 27 3.1 流量量測 27 3.2 壓力量測 31 3.3 雙探針設計及運作原理 33 3.3.1 探針固定及電路設計 37 3.3.2 後處理方法(Post-processing method) 40 3.3.3 瞬時速度、局部空泡分率、介面面積濃度計算方法、氣泡大小 49 3.3.4 雙探針內部構造 50 第4章 實驗操作 53 4.1 實驗初始條件 53 4.2 實驗流程SOP 54 4.3 雙探針法之誤差分析 56 第5章 實驗結果與討論 60 5.1 系統穩定性建立(SYSTEM STABILITY DEVELOPMENT) 60 5.2 系統壓力與Z/DH比較 63 5.3 單探針訊號分析及解釋 64 5.4 氣泡參數之徑向分布(RADIAL DISTRIBUTION OF FLOW PARAMETERS) 66 5.4.1 空泡分率 66 5.4.2 氣泡速度 69 5.4.3 IAC 73 5.4.4 Dsm 76 第6章 結論 81 參考文獻 82 附錄一 85 符號對照表 85

    1. Takamasa, T., et al., Experimental study of interfacial area transport of bubbly flow in small-diameter tube. International journal of multiphase flow, 2003. 29(3): p. 395-409.
    2. Zhao, D., et al., An experimental study on local interfacial area concentration using a double-sensor probe. International journal of heat and mass transfer, 2005. 48(10): p. 1926-1935.
    3. Mandal, A., Characterization of gas-liquid parameters in a down-flow jet loop bubble column. Brazilian Journal of Chemical Engineering, 2010. 27(2): p. 253-264.
    4. Hazuku, T., et al., Interfacial area concentration in annular two-phase flow. International journal of heat and mass transfer, 2007. 50(15): p. 2986-2995.
    5. Rocha, M.d.S. and J. Simões-Moreira, Void fraction measurement and signal analysis from multiple-electrode impedance sensors. Heat Transfer Engineering, 2008. 29(11): p. 924-935.
    6. Kataoka, I. and A. Serizawa, Interfacial area concentration in bubbly flow. Nuclear engineering and design, 1990. 120(2-3): p. 163-180.
    7. Hibiki, T., S. Hogsett, and M. Ishii, Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow. Nuclear Engineering and Design, 1998. 184(2): p. 287-304.
    8. Bartel, M.D., et al., Interfacial area measurements in subcooled flow boiling. Nuclear Engineering and Design, 2001. 210(1): p. 135-155.
    9. Hubbard, P.G., Operating Manual for the IIHR Hot-wire and Hot-film Anemometers. 1957.
    10. Hibiki, T. and M. Ishii, Experimental study on interfacial area transport in bubbly two-phase flows. International Journal of Heat and Mass Transfer, 1999. 42(16): p. 3019-3035.
    11. Ozar, B., et al., Interfacial area transport of vertical upward steam–water two-phase flow in an annular channel at elevated pressures. International Journal of Heat and Mass Transfer, 2013. 57(2): p. 504-518.
    12. Schlegel, J. and T. Hibiki, A correlation for interfacial area concentration in high void fraction flows in large diameter channels. Chemical Engineering Science, 2015. 131: p. 172-186.
    13. Tian, D., C. Yan, and L. Sun, Model of bubble velocity vector measurement in upward and downward bubbly two-phase flows using a four-sensor optical probe, in Progress in Nuclear Energy, 78. 2015. p. 110-120.
    14. Kexia, S., Z. Mingyuan, and C. Xuejun, Local Measurement of Gas-Liquid Bubbly Flow with a Double-Sensor Probe ‘. J Chinese Chem Engr, 2000. 18: p. 33-40.
    15. Monrós-Andreu, G., et al., Multi-needle capacitance probe for non-conductive two-phase flows. Measurement Science and Technology, 2016. 27(7): p. 74004-74015.
    16. Kataoka, I., M. Ishii, and A. Serizawa, Local formulation and measurements of interfacial area concentration in two-phase flow. International Journal of Multiphase Flow, 1986. 12(4): p. 505-529.
    17. Revankar, S. and M. Ishii, Local interfacial area measurement in bubbly flow. International journal of heat and mass transfer, 1992. 35(4): p. 913-925.
    18. Liu, T., Bubble size and entrance length effects on void development in a vertical channel. International Journal of Multiphase Flow, 1993. 19(1): p. 99-113.
    19. Liu, T.-J., An effective signal processing method for resistivity probe measurements in a two-phase bubbly flow. Measurement Science and Technology, 2002. 13(2): p. 206.
    20. Wu, Q. and M. Ishii, Sensitivity study on double-sensor conductivity probe for the measurement of interfacial area concentration in bubbly flow. International Journal of Multiphase Flow, 1999. 25(1): p. 155-173.
    21. Kim, S., et al., Development of the miniaturized four-sensor conductivity probe and the signal processing scheme. International journal of heat and mass transfer, 2000. 43(22): p. 4101-4118.
    22. Tian, D., C. Yan, and L. Sun, Model of bubble velocity vector measurement in upward and downward bubbly two-phase flows using a four-sensor optical probe. Progress in Nuclear Energy, 2015. 78: p. 110-120.
    23. 孫科霞, 張鳴遠, and 陳學俊, Local measurement of gas-liquid bubbly flow with a double-sensor probe, in 中国化学工程学报: 英文版, 8(1). 2000. p. 33-40.
    24. Monrós-Andreu, G., et al., Multi-needle capacitance probe for non-conductive two-phase flows, in Measurement Science and Technology, 27(7). 2016. p. 074004.
    25. Ozar, B., et al., Interfacial area transport of vertical upward steam–water two-phase flow in an annular channel at elevated pressures, in International Journal of Heat and Mass Transfer, 57(2). 2013. p. 504-518.
    26. Schlegel, J.P. and T. Hibiki, A correlation for interfacial area concentration in high void fraction flows in large diameter channels, in Chemical Engineering Science, 131. 2015. p. 172-186.

    QR CODE