簡易檢索 / 詳目顯示

研究生: 謝奕民
Hsieh, Yi-Min
論文名稱: 三嵌段共聚物PI-PS-PLLA之相行為研究
Phases Behaviors of Polyisoprene-b-Polystyrene- b-Poly(L-lactide) Triblock Terpolymers
指導教授: 何榮銘
Ho, Rong-Ming
口試委員: 陳信龍
蔡敬誠
蔣酉旺
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 66
中文關鍵詞: 聚乙烯聚異戊二烯聚乳酸相行為網狀結構三嵌段共聚物
外文關鍵詞: PI-PS-PLLA, phase behaviors, network morphology, triblock terpolymer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Owing to the multiple interaction parameters resulting from the presence of a distinct third block, the phase behaviors of ABC triblock terpolymers are obviously much richer than that of AB diblock and ABA triblock copolymers. The diversity of self-assembled morphologies from ABC triblock terpolymers is appealing for practical applications, in particular by tuning the chemical and physical properties of three constituent blocks. In this study, we aim to systematically examine the phase behaviors of a dual degradable triblock terpolymer, polyisoprene -b-polystyrene-b-poly(L-lactide) (PI-PS-PLLA), at which the PI block can be ozonized and the PLLA can be hydrolyzed. Moreover, the chirality effect on the self-assembly of the PI-PS-PLLA due to the presence of the chiral PLLA is examined. The final goal is to search for network morphologies so as to use them for the fabrication of nanoporous polymers through degradation of the PI and/or the PLLA.
    For practical applications, network morphologies with PS or PLLA as a matrix will be acquired since the samples with PI-rich fraction is easy to be deformed due to its low Tg. A variety of nanostructured phases such as core-shell body centered cubic and core-shell double gyroid morphologies in the PI-PS-PLLA can be obtained with fPIv~0.3. With fPSv~0.35 and high amount of PLLA fraction, three-domain lamellar morphology can be found, indicating that the chirality effect of PLLA-rich samples on the self-assembly of the PI-PS-PLLA is trivial. As a result, the exploration of network phases is focused on the composition range with fPLLAv~0.35 and high amount of PS; an alternating gyroid can be found. Most interestingly, a novel network phase is discovered in a specific PI-PS-PLLA, ISL-38b (fIv=0.28; fSv=0.43; fLv=0.29), at which different projections including “knitting pattern” with sinusoidal waves and tetragonal dots combined with stacking lamellae can be observed. Nevertheless, the projections are much different from simulated images of any typical network phases acquired by Matlab and Meshlab.
    To truly examine the network morphologies, direct visualization of the network texture is carried out by using electron tomography. As observed in the 3D TEM results, dark contrast PI due to the staining of OsO4 appears as “wave-tube stacking” in the bright matrix. To visualize the texture of PLLA microdomains, hydrolysis is carried out. The SEM micrographs of the hydrolyzed samples demonstrate that the PLLA microdomain should be a network texture. By taking advantage of templated sol-gel process, the PLLA microdomains can be successfully replaced by SiO2, further evidencing the suggested network texture of PLLA. The corresponding SAXS results with the reflections at the relative q values of √2: √3: √4: √6: √8: √10, reflecting that the space group of this new network phase is a Pn-- type, similar to that of double diamond (Pn m), on the basis of systematic absence principle for the reflections. A hypothetic nanostructured phase is thus proposed.


    Owing to the multiple interaction parameters resulting from the presence of a distinct third block, the phase behaviors of ABC triblock terpolymers are obviously much richer than that of AB diblock and ABA triblock copolymers. The diversity of self-assembled morphologies from ABC triblock terpolymers is appealing for practical applications, in particular by tuning the chemical and physical properties of three constituent blocks. In this study, we aim to systematically examine the phase behaviors of a dual degradable triblock terpolymer, polyisoprene -b-polystyrene-b-poly(L-lactide) (PI-PS-PLLA), at which the PI block can be ozonized and the PLLA can be hydrolyzed. Moreover, the chirality effect on the self-assembly of the PI-PS-PLLA due to the presence of the chiral PLLA is examined. The final goal is to search for network morphologies so as to use them for the fabrication of nanoporous polymers through degradation of the PI and/or the PLLA.
    For practical applications, network morphologies with PS or PLLA as a matrix will be acquired since the samples with PI-rich fraction is easy to be deformed due to its low Tg. A variety of nanostructured phases such as core-shell body centered cubic and core-shell double gyroid morphologies in the PI-PS-PLLA can be obtained with fPIv~0.3. With fPSv~0.35 and high amount of PLLA fraction, three-domain lamellar morphology can be found, indicating that the chirality effect of PLLA-rich samples on the self-assembly of the PI-PS-PLLA is trivial. As a result, the exploration of network phases is focused on the composition range with fPLLAv~0.35 and high amount of PS; an alternating gyroid can be found. Most interestingly, a novel network phase is discovered in a specific PI-PS-PLLA, ISL-38b (fIv=0.28; fSv=0.43; fLv=0.29), at which different projections including “knitting pattern” with sinusoidal waves and tetragonal dots combined with stacking lamellae can be observed. Nevertheless, the projections are much different from simulated images of any typical network phases acquired by Matlab and Meshlab.
    To truly examine the network morphologies, direct visualization of the network texture is carried out by using electron tomography. As observed in the 3D TEM results, dark contrast PI due to the staining of OsO4 appears as “wave-tube stacking” in the bright matrix. To visualize the texture of PLLA microdomains, hydrolysis is carried out. The SEM micrographs of the hydrolyzed samples demonstrate that the PLLA microdomain should be a network texture. By taking advantage of templated sol-gel process, the PLLA microdomains can be successfully replaced by SiO2, further evidencing the suggested network texture of PLLA. The corresponding SAXS results with the reflections at the relative q values of √2: √3: √4: √6: √8: √10, reflecting that the space group of this new network phase is a Pn-- type, similar to that of double diamond (Pn m), on the basis of systematic absence principle for the reflections. A hypothetic nanostructured phase is thus proposed.

    Abstract I Contents III List of Tables V List of Figures VI Chapter 1 Introduction 1 1.1 Nanomaterials 1 1.2 Self-Assembly 3 1.3 Self-Assembly of Block Copolymer 6 1.3.1 Diblock Copolymer 6 1.3.2 Triblock Terpolymer 7 1.4 Network Morphology 8 1.4.1 Double Gyroid, Q230 8 1.4.2 Alternative Gyroid, Q214 13 1.4.3 Order Bicontinuous Double Diamond, Q224 18 1.4.4 Orthorhombic Fddd Network, O70 19 Chapter 2 Objectives 25 Chapter 3 Experimental Details 27 3.1 Synthesis method of PI-PS-PLLA 27 3.1.1 General Procedure 27 3.1.2 Synthesis of Polyisoprene-b-Polystyrene (IS-OH) 27 3.1.3 Synthesis of PI-PS-PLLA Triblock Terpolymers 28 3.1.4 Polymer Analysis 29 3.2 Sample Preparation 30 3.3 Instruments 31 3.3.1 Thermogravimetric Analysis (TGA) 31 3.3.2 Differential Scanning Calorimetry (DSC) 31 3.3.3 Transmission Electron Microscopy (TEM) 32 3.3.4 Small-angle X-ray Scattering (SAXS) 32 3.3.5 Electron Tomography (3D TEM) 33 Chapter 4 Results and Discussion 34 4.1 Thermal Behaviors of PI-PS-PLLA and corresponding characterization 34 4.2 Phase behaviors of Self-assembled PI-PS-PLLA 37 4.2.1 PI-PS-PLLA with fPIv~0.3 39 4.2.2 PI-PS-PLLA with fPSv~0.35 44 4.2.3 PI-PS-PLLA with fPLLAv~0.35 46 4.3 Novel network phase 50 Chapter 5 Conclusive Remarks 60 Chapter 6 References 62

    1. Cao, G. Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, London, 2004.
    2. Das, B.; Subramanium, S.; Melloch, M. R. Semicond. Sci. Technol 1993, 8, 1347.
    3. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    4. Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
    5. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K.E.; Whitesides, G.M. J. Am. Chem. Soc. 2001,1234, 7677.
    6. Jakubith, S.; Rotermund, H.H.; Engel, W; Von O.A.; Ertl, G.. Phys. Rev. Lett. 1990, 65, 3013.
    7. Whiteside, G. M.; Ismagilov, R.F. Science 1999, 284, 89.
    8. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    9. Hamley, I. W. The Physics of Block Copolymer, VCH: Oxford University, New York, 1998.
    10. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
    11. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H. Science 1997, 276, 1401.
    12. Fogg, D. E.; Radzilowski, L. H.; Balnski, R.; Schrock, R. R.; Thomas, E. L. Macromolecules 1997, 30, 417.
    13. Forster, S.; Antonietti, M. Adv. Mater. 1998, 10, 195.
    14. Lipic, P. M.; Bates, F. S.; Hillmyer, M. A. J. Am. Chem. Soc. 1999, 120, 8963.
    15. Bita, I.; Yang, J. K. W.; Jung, Y. S.; Ross, C. A.; Thomas, E. L.; Berggren, K. K. Science 2008, 321, 939-943.
    16. Khandpur, A. K.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796 – 8806.
    17. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660 –2663.
    18. Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32 – 38.
    19. Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41,525.
    20. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    21. (a) Martin-Moreno, L.; Garcia-Vidal, F. J.; Somoza, A. M. Phys. Rev. Lett. 1999, 83, 73. (b) Milhaupt, J. M.; Lodge, T. P. J. Polym. Sci. Part B: Polym. Phys. 2001, 39, 843. (c) Adachi, M.; Okumura, A.; Sivaniah, E.; Hashimoto, T. Macromolecules 2006, 39, 6352.
    22. (a) Hajduk, D. A.; Takenouchi, H.; Hillmyer, M. A.; Bates, F. S.; Vigild, M. E.; Almdal, K. Macromolecules 1997, 30, 3788. (b) Hajduk, D. A.; Ho, R.-M.; Hillmyer, M. A.; Bates, F. S.; Almdal, K. J. Phys. Chem. B 1998, 102, 1356.
    23. Jinnai, H.; Hasegawa, H.; Nishikawa, Y.; Sevink, G. J. A.; Braunfeld, M. B.; Agard, D. A.; Spontak, R. J. Macromol. Rapid Commun. 2006, 27, 1424.
    24. (a) Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86. (b) Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W. Macromolecules 1994, 27, 6922. (c) Wang, C. Y.; Lodge, T. P. Macromolecules 2002, 35, 6997. (d) Wang, C. Y.; Lodge, T. P. Macromol. Rapid Commun. 2002, 23, 49.
    25. (a) Sakurai, S.; Umeda, H.; Furukawa, C.; Irie, H.; Nomura, S.; Lee, H. H.; Kim, J. K. J. Chem. Phys. 1998, 108, 4333. (b) Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Mai, S.-M.; Booth, C. Phys. Chem. Chem. Phys. 1999, 1, 2097.
    26. Alward, D. B.; Kinning, D. J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986, 19, 215.
    27. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
    28. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
    29. Luzzati, V.; Spegt, P. A. Nature 1967, 215, 701.
    30. Schoen, A. H. NASA TN D-5541, 1970.
    31. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
    32. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
    33. Matsen, M. W.; Schick, M. Phys. Rev. Lett. 1994, 72, 2660.
    34. Mogi, Y.; Kotsuji, H.; Kaneko, Y.; Mori, K.; Matsushita, Y.; Noda, I. Macromolecules 1992, 25, 5408.
    35. Mogi, Y.; Mori, K.; Matsushita, Y.; Noda, I. Macromolecules 1992, 25, 5412.
    36. Mogi, Y.; Nomura, M.; Kotsuji, H.; Ohnishi, K.; Matsushita, Y.; Noda, I. Macromolecules 1994, 27, 6755.
    37. Matsen, M. W. J. Chem. Phys. 1998, 108, 785.
    38. Phan, S.; Fredrickson, G. H. Macromolecules 1998, 31, 59.
    39. Dotera, T.; Hatano, A. J. Chem. Phys. 1996, 105, 8413.
    40. Dotera, T. Phys. Rev. Lett. 2002, 89, 205502/1.
    41. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Thomas, E. L.; Fetters, L. J. Macromolecules 1995, 28, 2570.
    42. Likhtman, A. E.; Semenov, A. N. Macromolecules 1994, 27, 3103.
    43. Olmsted, P. D.; Milner, S. T. Phys. Rev. Lett. 1994, 72, 936.
    44. Olmsted, P. D.; Milner, S. T. Phys. Rev. Lett. 1995, 74, 829.
    45. Xi, H.; Milner, S. T. Macromolecules 1996, 29, 2404.
    46. Verdier, P. H.; Stockmayer, W. H. J. Chem. Phys. 1962, 36, 227.
    47. Suzuki, J.; Seki, M.; Matsushita, Y. J. Chem. Phys. 2000, 112, 4862.
    48. Matsushita, Y.; Suzuki, J.; Seki, M. Physica B 1998, 248, 238.
    49. Matsushita, Y.; Torikai, N.; Suzuki, J.; Seki, M. J. Phys. Chem. Solids 1999, 60, 1279.
    50. Seki, M.; Suzuki, J.; Matsushita, Y. J. Appl. Crystallogr. 2000, 33,285.
    51. Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L. , Jr.; Fetters, L. J. Macromolecules 1986, 19, 2197.
    52. Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
    53. Hajduk, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
    54. Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K. Phys. Rev. Lett. 1994, 73, 86.
    55. Suzuki, J.; Nakane, K.; Takano, A.; Matsushita, Y. Polymer 2004, 45, 8989.
    56. Epps, T. H., III; Cochran, E. W.; Hardy, C. M.; Bailey, T. S.; Waletzko, R. S.; Bates, F. S. Macromolecules 2004, 37, 7085.
    57. Epps, T. H., III; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S. Macromolecules 2004, 37, 8325.
    58. Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
    59. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 422.
    60. Spontak, R. J.; Smith, S. D.; Ashraf, A. Macromolecules 1993, 26, 956.
    61. Spontak, R. J.; Smith, S. D.; Ashraf, A. Microsc. Res. Tech. 1994, 27, 412.
    62. Matsen, M. W. Phys. Rev. Lett. 1995, 74, 4225.
    63. Matsen, M. W. Macromolecules 1995, 28, 5765.
    64. Martı´nez-Veracoechea, F. J.; Escobedo, F. A. Macromolecules 2007, 40, 7354.
    65. Huse, D. A.; Leibler, S. J. Phys. (Paris) 1988, 49, 605.
    66. Martı´nez-Veracoechea, F. J.; Escobedo, F. A. Macromolecules 2009, 42, 1775.
    67. Bates, F. S. MRS Bull. 2005, 30, 525.
    68. Bailey, T. S.; Hardy, C. M.; Epps, T. H., III; Bates, F. S. Macromolecules 2002, 35, 7007.
    69. Kossuth, M. B.; Morse, D. C.; Bates, F. S. J. Rheol. 1999, 43, 167.
    70. Wang, Z. G.; Safran, S. A. Europhys. Lett. 1990, 11, 425.
    71. Hahn, T., Ed. International Tables for Crystallography, 4th revised ed.; Kluwer Academic: Boston, 1994; Vol. A.
    72. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE