簡易檢索 / 詳目顯示

研究生: 林政頴
Lin, Cheng-Ying
論文名稱: 多功能彩色共焦干涉系統之研發
RESEARCH AND DEVELOPMENT OF A MULTI-FUNCTION CHROMATIC CONFOCAL INTERFEROMETRIC SYSTEM
指導教授: 王偉中
Wang, Wei-Chung
口試委員: 陳政寰
Chen, Cheng-Huan
張禎元
Chang, Jen-Yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: 多波長共焦干涉儀多功能彩色共焦干涉系統繞射式光學元件即時量測能力厚度量測
外文關鍵詞: Multi-wavelength Confocal Interferometer, Multi-function Chromatic Confocal Interferometric System, Diffractive Optical Element, Real-time Measurement, Thickness Measurements
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用自行研發之即時演算法與人機介面,並藉由整合雙軸向精密位移線性平台與自行建立之多波長共焦干涉儀(Multi-wavelength Confocal Interferometer, MWCI)之光學架設建立一套多功能彩色共焦干涉系統(Multi-function Confocal Interferometric System, MFCCIS),其中使用繞射式光學元件(Diffractive Optical Element, DOE)做為軸向色散元件,建立深度校正曲線,達到大範圍掃描之即時量測能力。
    本研究所建立MFCCIS之光學架設是使用焦距為100mm且設計波長為550mm之DOE,且利用40X物鏡聚焦光場,進而將待測物之光譜訊號藉由光纖傳遞至微型單點式光譜儀,最後透過演算法進行光譜分析,即可獲得待測物之高度資訊。本研究亦探討了深度校正曲線之誤差來源,且藉由量測標準階高試片評估MFCCIS之量測精準度,最後利用彩色共焦厚度量測原理結合MFCCIS中的彩色干涉訊號,並針對超薄玻璃進行厚度量測。結果顯示本研究於標準階高試片之量測準確度為1.361%,而超薄玻璃之量測結果準確度為3.190%,由此證實MFCCIS具備高準確性與多功能量測能力。
    關鍵字:多波長共焦干涉儀、多功能彩色共焦干涉系統、繞射式
    光學元件、即時量測能力、厚度量測。


    In this thesis, a multi-function chromatic confocal interferometric system (MFCCIS) was proposed by integrating a self-developed real time algorithm, a biaxial high precision linear stage and a self-developed multi-wavelength confocal interferometer (MWCI). A depth-wavelength calibration curve was established by adopting a diffractive optical element (DOE) as the dispersion element, so that the MFCCIS can be used to obtain real time surface profile by biaxial scanning.
    In the experimental setup of MFCCIS, a DOE designed for the wavelength of 550nm with a focal length of 100mm was adopted and a 40X objective was used to condense light. The interference spectrum for height measurement was received by a single-point spectrometer after an optical fiber was used to transmit the spectrum signal. In addition, sources of error in depth-wavelength calibration curve was investigated. The precision of MFCCIS was verified by a measurement of a standard step height specimen. Besides, the theory of chromatic confocal thickness measurement was implemented to obtain the thickness of the ultra-thin glass plate by adopting the chromatic interference signal. The accuracy from height measurement of the standard step height specimen is 1.361%, and the accuracy of thickness measurement is 3.190% from the experiments of ultra-thin glass plates. Therefore, MFCCIS is applicable for multi-function measurement with high accuracy.
    Keywords: Multi-wavelength Confocal Interferometer, Multi-function Chromatic Confocal Interferometric System, Diffractive Optical Element, Real-time Measurement, Thickness Measurements.

    一、簡介......................1 1.1 研究背景..................1 1.2 研究動機與目標............2 二、文獻回顧..................4 三、實驗原理..................11 3.1 DOE理論..................11 3.1.1 繞射原理...............11 3.1.2 DOE原理................14 3.2 彩色共焦顯微理論..........20 3.2.1 聚焦形貌法原理..........20 3.2.2 彩色共焦原理............22 3.2.3 彩色共焦干涉原理........23 3.2.4 彩色共焦厚度量測原理.....26 四、 實驗架設與演算法.......28 4.1 量測系統架構..............28 4.2 即時量測演算法............31 五、實驗流程..................34 5.1 光路系統光路校準..........34 5.2 系統量測流程..............35 六、結果與討論................35 6.1 即時量測系統之發展與探討...37 6.2 三維形貌重建之結果與分析...38 6.2.1 深度校正曲線分析........38 6.2.2 標準試片之量測結果與討論.41 6.3 MFCCIS厚度量測............43 6.3.1 MFCCIS之有效NA值校正....44 七、結論與未來展望.............48 7.1 結論.....................48 7.2 未來展望..................50 八、參考文獻..................52

    [1] M. H. Shen, C. H. Hwang, W. C. Wang, Y. H. Chen and Y. H. Lin, “A New Optical System for Measuring Shape, In-Plane and Out-of-Plane Deformations and Deformation Gradient of Microstructures,” IUTAM Symposium on Advances of Optical Methods in Experimental Mechanics, Paper No. A24, 11 pages, Taipei, Taiwan, 2012.
    [2] M. H. Shen, C. H. Hwang, W. C. Wang, “White-Light Interferometer Micro-profile Measurement Based on Higher Steps Phase-Shifting Algorithm,” The 7th International Workshop on Advanced Optical Imaging and Metrology, pp. 341-344, Taichung, Taiwan, 2013.
    [3] M. H. Shen, C. H. Hwang and W. C. Wang, “Center Wavelength Measurement Based on Higher Steps Phase-Shifting Algorithms in White-Light Scanning Interferometry,” The 37th National Conference on Theoretical and Applied Mechanics (37th-NCTAM) and the 1st International Conference on Mechanics (1st-ICM), Paper No. 100, 9 pages, Hsinchu, Taiwan, 2013.
    [4] M. H. Shen, C. H. Hwang and W. C. Wang, “Multi-Step Phase-Shifting Functions in White-Light Interferometer,”..16th International Conference on Experimental Mechanics (ICEM16), Paper No. Y94114I7, 2 pages, Cambridge, United Kingdom, 2014.
    [5] M. H. Shen, C. H. Hwang and W. C. Wang, “Using Higher Steps Phase-Shifting Algorithms and Linear Least-Squares Fitting in White-Light Scanning Interferometry,” Optics and Lasers in Engineering, Vol. 66, pp. 165-173, 2015.
    [6] 沈明興, “應用多波長共焦干涉系統於表面輪廓之研究” ,國立清華大學動力機械工程學系博士論文,2015。
    [7] 余庭, “繞射式彩色共焦顯微儀之探討” ,國立清華大學動力機械工程學系碩士論文,2018。
    [8] 王子峯,整合繞射式光學元件於多波長共焦干涉儀之研發,碩士論文,國立清華大學動力機械工程研究所,2018。
    [9] G. Molesini, G. Pedrini, P. Poggi and F. Quercioli, “Focus-Wavelength Encoded Optical Profilometer,” Optics Communications, Vol. 49, pp. 229-233, 1984.
    [10] S. K. Nayar and Y. Nakagawa, “Shape from Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, pp. 824-831, 1994.
    [11] M. Subbarao and T. Choi, “Accurate Recovery of Three-Dimensional Shape from Image Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, pp. 266-274, 1995.
    [12] M. Subbarao and J. K. Tyan, “Selecting the Optimal Focus Measure for Autofocusing and Depth-from-Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, pp. 864-870, 1998.
    [13] M. Asif and T. S. Choi, “Shape from Focus Using Multilayer Feedforward Neural Networks,” IEEE Transactions on Image Processing, Vol. 10, pp. 1670-1675, 2001.
    [14] J. Kautsky, J. Flusser, B. Zitová and S. Šimberová, “A New Wavelet-Based Measure of Image Focus,” Pattern Recognition Letters, Vol. 23, pp. 1785-1794, 2002.
    [15] E. Papastathopoulos, K. Körner and W. Osten, “Chromatic Confocal Spectral Interferometry,” Applied Optics, Vol. 45, pp.8244-8252, 2006.
    [16] D. Reolon, M. Jacquot, I. Verrier, G. Brun and C. Veillas, “Broadband Supercontinuum Interferometer for High-Resolution Profilometry,” Optics Express, Vol. 14, pp. 128-137, 2006.
    [17] A. S. Malik and T. S. Choi, “Consideration of Illumination Effects and Optimization of Window Size for Accurate Calculation of Depth Map for 3D Shape Recovery,” Pattern Recognition, Vol. 40, pp. 154-170, 2007.
    [18] H. Xie, W. Rong and L. Sun, “Construction and Evaluation of a Wavelet-Based Focus Measure for Microscopy Imaging,” Microscopy Research and Technique, Vol.70, pp. 987-995, 2007.
    [19] J. Garzón, T. Gharbi and J. Menesses, “Real Time Determination of the Optical Thickness and Topography of Tissues by Chormatic Confocal Microscopy, ” Journal of Optics A: Pure and Applied Optics, Vol. 10, pp 104028-104036, 2008.
    [20] B. S. Chun, K. Kim and D. Gweon, “Three-Dimensional Surface Profile Measurement Using a Beam Scanning Chromatic Confocal Microscope,” Review of Scientific Instruments, Vol. 80, pp. 073706-073712, 2009.
    [21] A. Thelen, S. Frey, S. Hirsch and P. Hering, “Improvements in Shape-From-Focus for Holographic Reconstructions with Regard to Focus Operators, Neighborhood-Size, and Height Value Interpolation,” IEEE Transactions on Image Processing, Vol. 18, pp. 151-157, 2009.
    [22] M. T. Mahmood and T. S. Choi, “Focus Measure Based on the Energy of High-Frequency Components in the S Transform,” Optics Letters, Vol. 35, pp. 1272-1274, 2010.
    [23] D. Luo, C. Kuang and X. Liu, “Fiber-Based Chromatic Confocal Microscope with Gaussian Fitting Method,” Optics and Laser Technology, Vol. 44, pp. 788-793, 2012.
    [24] J. Solle, J. M. Linares, J. M. Sprauel and E. Mermoz, “Optical Measurement for the Estimation of Contact Pressure and Stress,” CIRP Annals-Manufacturing Technology, Vol. 61, pp. 483-486, 2012.
    [25] M. Vaishakh, “Optical Sectioning in Reciprocal Fiber-Optic Based Chromatic Confocal Microscope,” Optik, Vol. 123, pp. 1450-1452, 2012.
    [26] T. Kim, S. H. Kim, D. Do, H. Yoo and D. Gweon, “Chromatic Confocal Microscopy with a Novel Wavelength Detection Method Using Transmittance,” Optics Express, Vol. 21, pp. 6286-6294, 2013.
    [27] U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto and C. D. Angelis, “Chromatic Confocal Setup for Displacement Measurement Using a Supercontinuum Light Source,” Optics and Laser Technology, Vol. 49, pp. 91-94, 2013.
    [28] D. Duque and J. Garzón, “Effects of Both Diffractive Element and Fiber Optic Based Detector in a Chromatic Confocal System,” Optics and Laser Technology, Vol. 50, pp. 182-189, 2013.
    [29] I. H. Lee, S. O. Shim and T. S. Choi, “Improving Focus Measurement via Variable Window Shape on Surface Radiance Distribution for 3D Shape Reconstruction,” Optics and Lasers in Engineering, Vol. 51, pp. 520-526, 2013.
    [30] C. L. Zheng and J. Etheridge, “Measurement of Chromatic Aberration in STEM and SCEM by Coherent Convergent Beam Electron Diffraction,” Ultramicroscopy, Vol. 125, pp. 49-58, 2013.
    [31] S. Thiele, A. Seifert, and A. M. Herkommer, “Wave-Optical Design of a Combined Refractive-Diffractive Varifocal Lens,” Optics Express, Vol. 22, pp. 13343-13350, 2014.
    [32] X. Xu, Y. Wang, X. Zhang, S. Li, X. Liu, X. Wang and J. Tang, “A Comparison of Contrast Measurements in Passive Autofocus Systems for Low Contrast Images,” Multimedia Tools and Applications, Vol. 69, pp. 139-156, 2014.
    [33] E. H. Nadim, N. Hichem1, A. Nabil, D. Mohamed and G. Olivier, “Comparison of Tactile and Chromatic Confocal Measurements of Aspherical Lenses for Form Metrology,” International Journal of Precision Engineering and Manufacturingy, Vol. 15, pp. 821-829, 2014.
    [34] D. R. Lee, Y. D. Kim, D. G. Gweon and H. Yoo, “High Speed 3D Surface Profile without Axial Scanning: Dual-Detection Confocal Reflectance Microscopy,” Measurement Science and Technology, Vol. 25, pp. 125403-1‒125403-6, 2014.
    [35] K. T. Ang, Z. P. Fang and A. Tay, “Note: Development of High Speed Confocal 3D Profilometer,” Review of Scientific Instruments, Vol. 85, pp. 116103-1‒ 116103-3, 2014.
    [36] K. L. Apedo, C. Munzer, H. He, P. Montgomeryc, N. Serres, C. Fond and F. Feugeas, “Cement Paste Surface Roughness Analysis Using Coherence Scanning Interferometry and Confocal Microscopy,” Materials Characterization, Vol. 100, pp. 108-119, 2015.
    [37] H. Y. Wang, B. S. Lin, C. Y. Lou and M. C. Chan, “Mechanical Scan-Free Confocal Microscope by a Broadband Source and Two Balanced Wavelength-to-Space Transformations,” IEEE Photonics Journal, Vol. 7, pp. 3900108-1‒3900108-9, 2015.
    [38] K. Philipp, N. Koukourakis, R. Kuschmierz, C. Leithold, A. Fischer and J. Czarske, “Optical Dynamic Deformation Measurements at Translucent Materials,” Optics Letter, Vol. 40, pp. 514-517, 2015.
    [39] S. O. Shim and T. S. Choi, “A Novel Iterative Shape from Focus Algorithm Based on Combinatorial Optimization,” Pattern Recognition, Vol. 43, pp. 3338-3347, 2010.
    [40] 楊朝翔, “多波長繞射光學元件的研究與設計” ,國立臺北科技大學光電工程系碩士論文,2005。
    [41] 曾士芫, “以全像微影方法製作一維週期性結構” ,國立交通大學光電工程研究所碩士論文,2007。
    [42] J. W. Goodman, “Introduction to Fourier Optics,” 2nd Edition, McGraw Hill, New York, U. S. A., 1968.
    [43] H. P. Herzig, “Micro-Optics Elements, Systems and Application,” CRC Press, Switzerland, 1997.
    [44] 金國潘、嚴瑛白、鄔敏賢, “二元光學” ,國防工業出版社,1998。
    [45] S. Thiele, A. Seifert, and A. M. Herkommer, “Wave-Optical Design of a Combined Refractive-Diffractive Varifocal Lens,” Optics Express, Vol. 22, pp. 13343-13350, 2014.
    [46] S. L. Dobson, P. C. Sun and Y. Fainman, “Diffractive Lenses for Chromatic Confocal Imaging”, Applied Optics, Vol. 36, pp. 4744-4748, 1997.
    [47] J. Garzón, D. Duque, A. Alean, M. Toledo, J. Meneses and T. Gharbi, “Diffractive Elements Performance in Chromatic Confocal Microscopy,” Journal of Physics, Vol. 274, 2011.
    [48] J. Garzón, A. Plata, J. Meneses, G. M. Tribillon and T. Gharbi, “Chromatic Confocal Method for Determination of the Refractive Index and Thickness,” Journal of Physics, Vol. 274, 2011.
    [49] Herzig H., “Micro-Optics Elements, Systems and Applications,” London: Taylor & Francis, London, United Kindom, 1997.
    [50] L. C. Chen, C. N. Chen, and Y. W. Chang, “Development of a New Multi-Wavelength Confocal Surface Profilometer for On-Line Automatic Optical Inspection (AOI),” Asian Symposium for Precision Engineering and Nanotechnology, Kitakyushu, Japan, 2009.
    [51] G. J. Tearney, R. H. Webb and B. E. Bouma, “Spectrally Encoded Confocal Microscopy,” Optics Letters, Vol. 23, pp. 1152-1154 , 1998.
    [52] H. J, Tiziani, R. Achi and R. N. Kramer, “Chromatic Confocal Microscopy with Microlenses,” Journal of Modern Optics. Vol. 43, pp. 155-163, 1996.
    [53] 陳奕璇,“彩色共焦干涉式顯微三維形貌量測方法與探頭之研發”,國立臺北科技大學自動化科技研究所碩士論文,2012。
    [54] T. Boettcher, M. Gronle and W. Osten, “Multi-Layer Measurement Using a New Hybrid Single-Shot Technique: Chromatic Confocal Coherence Tomography (CCCT),” Optics Express, Vol. 25, pp. 10204-10213, 2017.
    [55] http://www.otophotonics.com/productshow_48.html
    [56] http://www.tfo.com.tw/products_detail.php?pid=5
    [57] https://www.physikinstrumente.com/en/products/linear stages/
    stages-with-stepper-dc-brushless-dc-bldc-motors/l-511-high-precision-linear-stage-1201901/#description
    [58] https://www.physikinstrumente.com/en/products/controllers-and-drivers/motion-controllers-drivers-for-linear-torque-stepper-dc-servo-motors/c-863-mercury-servo-controller-900606/#description
    [59] https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5503
    [60] http://www.doeopticalworkshop.com.tw/
    [61] Y. Dodge, “The Concise Encyclopedia of Statistics,” Springer, New York, U. S. A., 2008.
    [62] https://www.mathworks.com/help/matlab/ref/movmean.html#bu6jxrj
    [63] 史天元,“準確度與精密度”, Journal of Cadastral Survey, Vol. 32, pp. 18-26, 2013.

    QR CODE