研究生: |
楊雅婷 |
---|---|
論文名稱: |
Functional studies on wild-type and mutant Escherichia coli spermidine synthase by HPLC 以高效能液相層析儀分析原生型及突變型大腸桿菌的亞精胺合成酶功能性 |
指導教授: | 黃海美 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 亞精胺合成酶 、腐胺 、亞精胺 、大腸桿菌 、高效能液相層析儀 |
外文關鍵詞: | spermidine synthase, putrescine, spermidine, Escherichia coli, HPLC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腸桿菌屬格蘭氏陰性之兼性厭氧菌,通常生長在溫血生物的腸道系統。大腸桿菌菌株K12的基因組序列已被發表於1997年。
來自於大腸桿菌K12的speE gene被預測可轉譯為亞精胺合成酶 (spermidine synthase,大腸桿菌亞精胺合成酶),它是與speD (可轉譯出S-腺甘甲硫氨酸脫羧酶)共同組成一個單一的操作組。在多胺類生合成中,亞精胺合成酶主要催化腐胺 (putrescine, PUT)及去羧基的S-腺甘甲硫氨酸 (decarboxylated S-adenosylmethionine, dcSAM)合成亞精胺(spermidine)。 它的蛋白質序列與哺類類,植物,以及其它菌種的亞精胺合成酶的序列一致性 (sequence identity) 具有30-36 %。 本研究中,我們將speE基因 (含864個鹼基對)建構在pQE30質體中,使其在大腸桿菌SG13009中過量表現帶有六個組胺酸(histidine)的EcSpdS重組蛋白。此過量表現的蛋白(33.8 kDa)藉由鎳螫合親和層析法(Ni-NTA affinity chromatography)純化得到產率為30 mg/L 菌液。大腸桿菌亞精胺合成酶的酵素活性是以高效能液相層析儀分析,酵素活性是決定於一個反應終止後,產物SPD的生成及受質PUT的消耗。此大腸桿菌亞精胺合成酶在pH 7-8及溫度在37-43℃時能夠具有最大的催化活性。它的動力學常數(Km)對於腐胺(PUT)及去羧基的S-腺甘甲硫氨酸(dcSAM)分別為122.1 μM 及109.0 mΜ。在Lineweavre-Burk作圖中,當增加第一受質dcSAM的濃度時,相對於第二個受質PUT,能夠得到一組平行線,反之亦然。此暗指大腸桿菌亞精胺合成酶的機制為乒乓機制(ping pong mechanism)。
不同於原生型大腸桿菌亞精胺合成酶,在原生型的gatekeeping loop區上具有單一個殘基突變的突變型大腸桿菌亞精胺合成酶(D158A,C159A,C159S,T160A,D161A,P162A,I163A,P165Q),它們的酵素活性皆分別使用薄膜色層分析(TLC)及高效能色層分析儀(HPLC)分析。結果顯示,D158A及D161A突變型重組蛋白的催化活性完全喪失。C159A, T160A及P165Q突變型重組蛋白的催化效率(catalytic efficiency)也分別下降為77%, 61%及57%。
目前為止,在任何物種皆未被指出其內生型的亞精胺合成酶的含量。以西方轉漬法,利用重組蛋白抗血清可偵測到大腸桿菌的細胞萃取液約含有0.083% (1/1250)的內生型亞精胺合成酶。相對於,胃幽門螺旋桿菌(Helicobacter pylori)(具有不完整的gatekeeping loop區域)的細胞萃取液約含有0.031%,當以此菌的重組蛋白抗血清可測得。若以免疫沉澱法收集內生型亞精胺合成酶(大腸桿菌或胃幽門螺旋桿菌)只能得到1/3的內生型亞精胺合成酶。
Escherichia coli (E. coli) is a Gram-negative, facultative anaerobic bacterium that is generally found in the intestine of warm-blooded organisms. Whole genome sequencing in E. coli strain K12 has been completed in 1997. The speE gene from E. coli strain K12, coded for spermidine synthase (EcSpdS), shares an operon with speD gene (coded for S-adenosyl-methionine decarboxylase). Spermidine synthase catalyzes the production of spermidine (SPD) from putrescine (PUT) and decarboxylated S-adenosylmethionine (dcSAM) in polyamine biosynthesis. The deduced amino acid sequence of the EcSpdS shares 30-36 % sequence identities with most spermidine synthases from mammalian cells, plants and bacteria. In this study, the speE gene (864 bases pair, coded for EcSpdS) was cloned into the pQE30 vector and over-expressed the 6x His-tagged recombinant EcSpdS in Escherichia coli strain SG13009. The over-expressed protein (33.8 kDa) was purified by Ni-NTA affinity chromatography at a yield of 30 mg/L of bacteria culture. Enzyme activities were determined through HPLC to detect whether product spermidine formed or reactant putrecine consumed after reaction. Optimal pH and temperature for the EcSpdS reaction were between pH 7 - 8 and 37 - 43℃. The apparent Km values for putrescine and dcSAM were 122.1 μM and 109.0 μM, respectively. Increasing concentrations of the first substrate, dcSAM, gave an array of parallel lines (in Lineweavre-Burk plot) for the second substrate, putrescine, kinetics and vice versa, suggesting a ping pong mechanism for EcSpdS reaction.
The enzyme activities from EcSpdS mutants (D158A, C159A, C159S, T160A, P161D, P162A, I163A, P165Q), one residue different from wild type EcSpdS in gate-keeping loop region for each, were determined by both TLC and HPLC. The results showed that a complete loss of enzyme activity occurred in D158A and D161A mutants. Mutant protein, C159A, T160A and P165Q reduced enzyme catalytic efficiency to 77%, 61% or 57%, respectively.
Up to present, the content of endogenous spermidine synthase was not reported in any SpdS species. Endogenous EcSpdS protein was estimated about 0.083% (1/1250) in total cell lysate after western blotting along with anti-EcSpdS serum. In contrast, less amount (0.031%) of endogenous spermidine synthase (incomplete gate keeping region in structure) in total cell lysate from Helicobacter pylori after western blotting along with anti-HpSpdS serum. After immunoprecipitation (IP), only one-third of endogenous EcSpdS or HpSpdS was recovered after the detection with western blotting.
Adler H, Margoshes M, Snyder LR, Spitzer C (1977): Rapid chromatographic
method to determine polyamines in urine and whole blood. J Chromatogr 143
125-36.
Beyer C, van den Ende A (1983): Improved separation procedure for urinary di- and polyamines by means of thin-layer chromatography. Clin Chim Acta 129:211-4
Blattner FR, Plunkett G, 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997): The complete genome sequence of Escherichia coli K-12. Science 277:1453-62.
Bowman WH, Tabor CW, Tabor H (1973): Spermidine biosynthesis. Purification and properties of propylamine transferase from Escherichia coli. J Biol Chem 248:2480-6.
Burger PB, Birkholtz LM, Joubert F, Haider N, Walter RD, Louw AI (2007): Structural and mechanistic insights into the action of Plasmodium falciparum spermidine synthase. Bioorg Med Chem 15:1628-37.
Cacciapuoti G, Porcelli M, Moretti MA, Sorrentino F, Concilio L, Zappia V, Liu ZJ, Tempel W, Schubot F, Rose JP, Wang BC, Brereton PS, Jenney FE, Adams MW (2007): The first agmatine/cadaverine aminopropyl transferase: biochemical and structural characterization of an enzyme involved in polyamine biosynthesis in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 189:6057-67.
Cason AL, Ikeguchi Y, Skinner C, Wood TC, Holden KR, Lubs HA, Martinez F, Simensen RJ, Stevenson RE, Pegg AE, Schwartz CE (2003): X-linked spermine synthase gene (SMS) defect: the first polyamine deficiency syndrome. Eur J Hum Genet 11:937-44.
Cleland WW (1963a): The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 67:104-37
Cleland WW (1963b): The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta 67:173-87
Cleland WW (1963c): The kinetics of enzyme-catalyzed reactions with two or more substrates or products. III. Prediction of initial velocity and inhibition patterns by inspection. Biochim Biophys Acta 67:188-96
Coward JK, Motola NC, Moyer JD (1977): Polyamine biosynthesis in rat prostate. Substrate and inhibitor properties of 7-deaza analogues of decarboxylated S-adenosylmethionine and 5'-methylthioadenosine. J Med Chem 20:500-5.
Dufe VT, Luersen K, E schbach ML, Haider N, karlberg T, Walter RD, Al-Karadaghi S (2005): Cloning, expression, characterization and three- dimensional structure determination of Caenorhabditis elegans spermidine synthase. FEBS Lett 579:6037-43.
Golding BT, Nassereddin IK (1982): Stereochemistry of spermidine synthase. J. Am. Chem. Soc 104:5815-17.
Hafner EW, Tabor CW, Tabor H (1979): Mutants of Escherichia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. J Biol Chem 254: 12419-26.
Haider N, Eschbach ML, Dias Sde S, Gilberger TW, Walter RD, Luersen K (2005): The spermidine synthase of the malaria parasite Plasmodium falciparum: molecular and biochemical characterisation of the polyamine synthesis enzyme. Mol Biochem Parasitol 142:224-36.
Hamasaki-Katagiri N, Tabor CW, Tabor H (1997): Spermidine biosynthesis in Saccharomyces cerevisae: polyamine requirement of a null mutant of the SPE3 gene (spermidine synthase). Gene 187:35-43.
Hanzawa Y, Imai A, Michael AJ, Komeda Y, Takahashi T (2002): Chara cterization of the spermidine synthase-related gene family in Arabidopsis thaliana. FEBS Lett 527:176-80.
Hanzawa Y, Takahashi T, Michael AJ, Burtin D, Long D, Pineiro M, Coupland G, Komeda Y (2000): ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. Embo J 19:4248-56.
Hibasami H, Borchardt RT, Chen SY, Coward JK, Pegg AE (1980): Studies of inibition of rat spermidine synthase and spermine synthase. Biochem J 187: 419-28.
Hibasami H, Pegg AE (1978): Rapid and convenitent method for the assay of aminopropyltransferases. Biochem J 169: 709-12.
Hibasami H, Tanaka M, Nagai J, Ikeda T (1980): Dicyclohexylamine, a potent inhibitor of spermidine synthase in mammalian cells. FEBS Lett 116:99-101.
Hibi N, Higashiguchi S, Hashimoto T, Yamada Y (1994): Gene expression in tobacco low-nicotine mutants. Plant Cell 6:723-35.
Hofmann K, Bucher P. Falquet L, Bairoch A (1999). The PROSITE database, its status in 1999. Nucleic Acids Res ascites-tumour cells. Biochem J 261: 205-10.
Holm I, Persson L, Pegg AE, Heby O (1989): Effects of S-adenosyl-1,8-diamino-3-thio-octane and S-methyl-5'-methylthioadenosine on polyamine synthesis in Ehrlich ascites-tumour cells. Biochem J 261:205 -10.
Hwang DF, Chang SH, Shiua CY, Chai T(1997): High-performance liquid chromatographic determination of biogenic amines in fish implicated in food poisoning. J Chromatogr B Biomed Sci Appl 693:23-9
Igarashi K, Kashiwagi K (2000): Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559-64.
Ikeguchi Y, Bewley MC, Pegg AE (2006): Aminopropyltransferases: function, structure and genetics. J Biochem 139:1-9.
Imai A, Matsuyama T, Hanzawa Y, Akiyama T, Tamaoki M, Saji H, Shirano Y, Kato T, Hayashi H, Shibata D, Tabata S, Komeda Y, Takahashi T (2004): Spermidine synthase genes are essential for survival of Arabidopsis. Plant Physiol 135:1565-73.
Jin Y, Bok JW, Guzman-de-Pena D, Keller NP (2002): Requirement of spermidine for developmental transitions in Aspergillus nidulans. Mol Microbiol 46:801-12.
Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004): Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712-22.
Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006)
Improvement of environmental stress tolerance of sweet potato by
introduction of genes for spermidine synthase. Plant Biotechnol 23: 75-83
Ke SH, Madison EL (1997): Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method. Nucleic Acids Res 25:3371-2
Kingsbury JM, Yang Z, Ganous TM, Cox GM, McCusker JH (2004): Novel chimeric spermidine synthase-saccharopine dehydrogenase gene (SPE3-LYS9) in the human pathogen Cryptococcus neoformans. Eukaryot Cell 3:752-63.
Korolev S, Ikeguchi Y, Skarina T, Beasley S, Arrowsmith C, Edwards A, Joachimiak A, Pegg AE, Savchenko A (2002): The crystal structure of spermidine synthase with a multisubstrate adduct inhibitor. Nat Struct Biol 9:27-31.
Lee MJ, Huang CY, Sun YJ, Huang H (2005): Cloning and characterization of spermidine synthase and its implication in polyamine biosynthesis in Helicobacter pylori strain 26695. Protein Expr Purif 43:140-8.
Liu C, Coward JK (1991): Stereospecific synthesis of (R)- and (S)-S-adenosyl-1,8-diamino-3-thiooctane, a potent inhibitor of polyamine biosynthesis. Comparison of asymmetric induction vs enantiomeric synthesis. J Med Chem 34:2094-101.
Lu PK, Chien SY, Tsai JY, Fong CT, Lee MJ, Huang H, Sun YJ (2004): Crystallization and preliminary X-ray diffraction analysis of spermidine synthase from Helicobacter pylori. Acta Crystallogr D Biol Crystallogr 60:2067-9.
Lu PK, Chien SY, Tsai JY, Chien HY, Huang H, Chu CH, Sun YJ (2007): Crystallization structure of Helicobacter pylori spermidine synthase: A Rossmann-like fold with a distinct active site. Proteins 67:743–54.
Michael AJ (1999): Genes of polyamine synthesis and transport: exploiting genome projects to determine similarities and differences between plant, microbial and animal polyamine metabolic pathways. In: Polyamines in health and nutrition. S. Bardocz and A. White, editors, Kluwer Academic Publishers, Boston/Dordrecht/London. 55-64.
Minguet EG, Vera-Sirera F, Marina A, Carbonell J, Blazquez MA (2008): Evolutionary diversification in polyamine biosynthesis. Mol Biol Evol 25:2119-28.
Morgan DM (1998): Determination of polyamines as their benzoylated derivatives by HPLC. Methods Mol Biol 79:111-8.
Moore RC, Boyle SM (1990): Nucleotide sequence and analysis of the speA gene encoding biosynthetic arginine decarboxylase in Escherichia coli. J Bacteriol 172:4631-40.
Morris DR, Boeker EA (1983): Biosynthetic and biodegradative ornithine and arginine decarboxylase from Escherichia coli. Methods Enzymol 94:125-34.
Nishimura K, Ohki Y, Fukuchi-Shimogori T, Sakata K, Saiga K, Beppu T, Shirahata A, Kashiwagi K, Igarashi K (2002): Inhibition of cell growth through inactivation of eukaryotic translation initiation factor 5A (eIF5A) by deoxyspergualin. Biochem J 363:761-8.
Orr GJ, Danz DW, Pontoni G, Prabhakaran PC, Gould SJ, Coward, JK (1988)
Synthesis of chirally deuteriated (S-adenosyl-S-methylsufonio)propylamines
and spermidines. Elucidation of the stereochemical course of putrescine
aminopropyltransferase (spermidine synthase). J. Am. Chem. Soc. 110,
5791–99
Ohnuma M, Terui Y, Tamakoshi M, Mitome H, Niitsu M, Samejima K, Kawashima E, Oshima T (2005): N1-aminopropylagmatine, a new polyamine produced as a key intermediate in polyamine biosynthesis of an extreme thermophile, Thermus thermophilus. J Biol Chem 280:30073-82.
Picard V, Ersdal-Badju E, Lu A, Bock SC (1994): A rapid and efficient one-tube PCR-based mutagenesis technique using Pfu DNA polymerase. Nucleic Acids Res 22:2587-91.
Pegg AE (1986): Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J 234:249-62.
Pegg AE, Bitonti AJ, McCann PP, Coward JK (1983): Inhibition of bacterial aminopropyltransferases by S-adenosyl-1,8-diamino-3-thiooctane and by dicyclohexylamine. FEBS Lett 155:192-6.
Pegg AE, Poulin R, Coward JK (1995): Use of aminopropyltransferase inhibitors and of non-metabolizable analogs to study polyamine regulation and function. Int J Biochem Cell Biol 27:425-42.
Pegg AE, Tang KC, Coward JK (1982): Effect of S-adenosyl-1,8-diamino-3- thiooctane on polyamine metabolism. Biochemistry 21:5082-89.
Pontoni G, Coward JK, Orr GR, Gould SJ (1983): Stereochemical studies of enzyme-catalyzed alkyl-transfer reactions.An NMR method for distinguishing between the two prochiral hydrogens at C-i' of spermidine. Tetrahedron Lett.
24:151-4.
Porta R. Esposito C, Sellinger OZ (1981): Rapid assay of spermidine synthase activity for high-performance liquid chromatography. J Chromatogr 226:208 -12
Raina A, Eloranta T, Pajula RL (1983): Rapid assays for putrescine aminopropyltransferase (spermidine synthase) and spermidine aminopropyltransferase (spermine synthase). Methods Enzymol 94: 257-60
Raina A, Hyvonen T, Eloranta T, Voutilaninen M, Samejima K, Yamanoha B (1984): Polyamine synthesis in mammalian tissues. Isoltion and characterization of spermidine synthase from bovine brain. Biochem J 219:991-1000.
Redmond JW, Tseng A (1979): High-pressure liquid chromatographic determination of putrescine, cadaverine, spermidine and spermine, J Chromatogr 170:479-81
Riechers DE, Timko MP (1999) Structure and expression of the gene family encoding putrescine N-methyltransferase in Nicotiana tabacum: new clues to the evolutionary origin of cultivated tobacco. Plant Mol Biol 41:387–401
Roberts SC, Jiang Y, Jardim A, Carter NS, Heby O, Ullman B (2001): Genetic analysis of spermidine synthase from Leishmania donovani. Mol Biochem Parasitol 115:217-26.
Samejima K, Dairman W, Stone J, Udenfriend S (1971): Condensation of ninhydrin with aldehydes and primary amines to yield highly fluorescent ternary products. II. Application to the detection and assay of peptides, amino acids, amines, and amino sugars. Anal Biochem 42:237-47.
Samejima K, Yamanoha B (1982): Purification of spermidine synthase from rat ventral prostate by affinity chromatography on immobilized S-adenosyl (5')-3-thiopropylamine. Arch Biochem Biophys 216:213-22.
Sherman ML, Shafman TD, Coward JK, Kufe DW (1986): Selective inhibition of spermidine biosynthesis and differentiation by S-adenosyl-1,8-diamino- 3-thiooctane. BioChem Pharmac 35:2633-36.
Shirahata A, Morohoshi T, Samejima K (1988): Trans-4-methylcyclohexylamine, a potent new inhibitor of spermidine synthase. Chem Pharm Bull 36:3220-2.
Tabor CW, Tabor H (1987): The speEspeD operon of Escherichia coli. Formation and processing of a proenzyme form of S-adenosylmethionine decarboxylase. J Biol Chem 262:16037-40.
Tabor CW, Tabor H, Xie QW (1986): Spermidine synthase of Escherichia coli: localization of the speE gene. Proc Natl Acad Sci U S A 83:6040-4.
Tabor CW, Tabor H (1984): Polyamines. Annu Rev Biochem 53:749-90.
Tabor H (1981): Polyamine biosynthesis in Escherichia coli: construction of polyamine-deficient mutants. Med Biol 59:389-93.
Tholl D, Harms R, Ludwig A, Kaiser A (1998): Retarded growth of an Escherichia coli mutant deficient in spermidine synthase can be unspecifically repaired by addition of various polyamines. World J Microb Biot 14:857-63
Tabor H, Rosenthal SM, Tabor CW (1958): The biosynthesis of spermidine and spermine from putrescine and methionine. J Biol Chem 233:907-14.
Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008): Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251-63.
Wu H, Min J, Zeng H, McCloskey DE, Ikeguchi Y, Loppnau P, Michael AJ, Pegg AE, Plotnikov AN (2008): Crystal structure of human spermine synthase: implications of substrate binding and catalytic mechanism. J Biol Chem 283:16135-46.
Wu WH, Morris DR (1973): Biosynthetic arginine decarboxylase from Escherichia coli. Purification and properties. J. Biol. Chem 248:1687-95.
Xie QW, Tabor CW, Tabor H (1993): Deletion mutations in the speED operon: spermidine is not essential for the growth of Escherichia coli. Gene 126:115-7.
Yamamoto S, Itano H, Kataoka H, Makida M, J (1982): Gas-liquid chromatographic method for analysis of Di- and polyamines in foods, J Agric Food Chem 30:435-9.
Yoon SO, Lee YS, Lee SH, Cho YD (2000): Polyamine synthesis in plants: isolation and characterization of spermidine synthase from soybean (Glycine max) axes. Biochim Biophys Acta 1475:17-26.
Zappia V, Cacciapuoti G, Pontoni G, Oliva A (1980): Mechanism of propylamine-transfer reactions. Kinetic and inhibition studies on spermidine synthase from Escherichia coli. J Biol Chem 255:7276-80.
Zhang Z, Honda C, Kita M, Hu C, Nakayama M, Moriguchi T (2003): Structure and expression of spermidine synthase genes in apple: two cDNAs are spatially and developmentally regulated through alternative splicing. Mol Genet Genomics 268:799-807.