簡易檢索 / 詳目顯示

研究生: 褚昱良
Chu, Yu-Liang
論文名稱: 磨削參數對熱影響層之研究
A Study of Grinding Parameters on Heat-Affected Zones
指導教授: 左培倫
Tso, Pei-Lum
口試委員: 顏丹青
Yen, Tan-Ching
鄧建中
Deng, Jian-Zhong
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 50
中文關鍵詞: 磨削參數輕磨削金相熱影響層
外文關鍵詞: Grinding Parameters, Low Stress Grinding, Metallography, Heat-Affected Zones
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 磨削品質為加工者常常忽略卻會影響工件性能的因素,本文主要內容在研究、討論如何在相同材料移除率下提升磨削品質以及在相同品質下提升材料移除率,方法是透過高速磨削及移動熱模型的參數搭配而提出的,最後實驗結果以金相的方法檢驗,結果顯示在相同材料移除率下表面品質得以提升;在相近磨削品質可提升材料移除率,但超過一定材料移除率磨削品質開始不穩定,結果另外發現砂輪修整條件影響變質層之程度更超過其他參數的調控。


    Grinding quality is the factor that a processor often overlooks but affects the performance of the workpiece. The main contents of this paper are to discuss how to improve the grinding quality under the same material removal rate and to increase the material removal rate under the same quality. The concept of Solution is based on high-speed grinding and the moving thermal model, and the results are verified by metallographic method. The results show that surface quality can be improved under same material removal rate, and the material removal rate can be increase under same surface quality. While it will be unstable if the material removal rate exceeds the threshold. In addition, the results also find that dressing conditions have a higher degree of impact than the regulation of parameters.

    第一章 緒論 1 1.1鉻鉬鋼 1 1.2問題描述 1 1.3研究目標 2 第二章 文獻回顧 3 第三章 高速切削理論 9 3.1幾何學之磨削理論 9 3.3高速加工簡介 12 第四章 金相 15 4.1殘留沃斯田鐵 15 4.2麻田散鐵 17 4.3雪明碳鐵 18 第五章 實驗規劃與設備 20 5.1實驗設備 20 6.2磨削實驗 26 5.3實驗材料與砂輪 27 5.4實驗設備架設 27 5.5實驗規劃 28 第六章 磨削熱介紹 32 第七章 實驗結果 36 7.1實驗一 等材料移除率實驗 36 7.2實驗二 等無因次磨粒切深實驗 41

    [1] Jaeger, J.C. (1942) "Moving Souces of Heat and Temperatures in Sliding Contact", Proc. Royal Soc. of New South Wales, 76, 203-204
    [2] M.C. Shaw,” A production engineering approach to grinding temperatures”, Journal of Materials Processing Technology, Volume 44, Issues 3–4, Pages 159-169 ,1994,
    [3] Yuwen Zhang ,”An integral approximate solution of heat transfer in the grinding process” International Journal of Heat and Mass Transfer, Volume 39, Issue 13, 1996, Pages 2653-2662
    [4] S. Malkin, C. Guo, ”Thermal Analysis of Grinding”, Annals of the CIRP, Volume 56, Issue 2, 2007, Pages 760-782
    [5] Snoeys, R., Maris, M., Peters, J., Thermally Induced Damage in Grinding, Annals of the CIRP, 27/2: pp.571-581. , 1978
    [6] Bogdan W. KruszynÂski, Residual stress in grinding, Journal of Materials Processing Technology, Volume 109 Issues 3 pp.254-257 2001
    [7] Schulz H ,History of High Speed Machining, REVISTA DE CIÊNCIA & TECNOLOGIA,,1999
    [8] Schulz H., Moriwaki T., High –speed machining, Ann. of the CIRP, 1992, t. 41, nr 2, s. pp. 637 –642
    [9] Zhenzhen Chen, Chip formation of nickel-based superalloy in high speed grinding with single diamond grit, Abrasive Technology, vol. 5,No.20,2012
    [10] M. Huerta and S. Malkin, Grinding of Glass: The Mechanics of the Process, ASME Journal of Engineering for Industry, 1976
    [11] J.M. Ni, B.Z. Li, J.Z. Pang “The Characteristics of High-Speed Cylindrical Grinding of Silicon Carbide and its influence on the Surface Layer,” Advanced Materials Research, Vol. 565, pp. 123-128 , 2012
    [12] Jianyi Chen .Temperature and energy partition in high-speed grinding of alumina with a brazed diamond wheel Machining Science and Technology, 2010
    [13] Jianbin Chen,” Investigate on distribution and scatter of surface residual stress
    in ultra-high speed grinding”, The International Journal of Advanced Manufacturing Technology, 2014, Volume 75, Issue 1, pp 615–627
    [14] Liu Judong, et al. "65Mn 钢磨削硬化层组织的研究." 中国机械工程 15.17 (2004): 1573-1576
    [15] Song-xiang QIN, et al. "40Cr 钢磨削淬火层组织及其形成机理." 机械工程材料 31.12 (2007): 24-29.
    [16] Vashista, M., A. Gaddam, and S. Paul. "Study of surface integrity of ground bearing steel using Barkhausen noise technique." The International Journal of Advanced Manufacturing Technology 63.5 (2012): 771-783.
    [17] Xiangming Huang,Experimental study on white layers in high-speed grinding of AISI52100 hardened steel,Journal of Mechanical Science and Technology 29 (3) pp.1257~1263,2015
    [18] 徐明堅,最新切削加工技術,復漢出版社,1999
    [19] E.J. Weller著,張瑞慶 譯,Nontraditional Machining Processes 2/e非傳統加工,高立圖書有限公司,1999。
    [20] S. Malkin and E. Lenz, "Burning limit for surface and cylindrical grinding of steels," Annals of the CIRP, vol. 27, pp. 233-236, 1978
    [21] BenAmor, R.: Thermomechanische Wirkmechanismen und Spanbildung bei der Hochgeschwindigkeitszerspanung [Thermo-mechanical effect mechanisms and chip formation in high speed cutting]. Dr.–Ing. Diss. Universität Hannover 2003
    [22] Tönshoff, H.K., Denkena, B., et al.: Spanbildung und Temperaturen beim Spanen mit hohen Geschwindigkeiten [Chip formation and temperatures in cutting with high speeds], pp. 1–40, Wiley, Verlag ,2005
    [23] Tönshoff, H.K., Denkena, B., Basics of Cutting and Abrasive Processes, springer, 2013
    [24] http://blog.xuite.net/jerrychumf/Mechanical/142902937
    [25] George Vander Voort,” Martensite and the Control of Retained Austenite”,2014
    [26] R. Hossain ,”Stability of retained austenite in high carbon steel under compressive stress: an investigation from macro to nano scale”, Scientific Reports, 2017
    [27] LIU CHENG, C. M. BRAKMAN, B . M . KOREVAAR, and E . J . MITTEMEIJER,” The Tempering of Iron-Carbon Martensite;Dilatometric and Calorimetric Analysis” Metallurgical Transactions A, 1988, Volume 19, Issue 10, pp 2415–2426
    [28] http://www.gowelding.com/met/carbon.htm,The Metallurgy Of Carbon Steel
    [29] George Vander Voort,” Martensite and the Control of Retained Austenite”,2014

    QR CODE