研究生: |
陳奕竹 Chen,Yi-Chu |
---|---|
論文名稱: |
硫化鉛量子點轉相技術及其在量子點敏化太陽能電池之應用研究 Study on Phase Transfer of PbS Quantum Dot and Its Application in Quantum Dot-Sensitized Solar Cells |
指導教授: |
周更生
Chou, Kan-Sen |
口試委員: |
呂世源
Lu, Shih-Yuan 盧信冲 Lu, Hsin-Chun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 硫化鉛量子點 、轉相技術 、量子點敏化太陽能電池 、氧化鋅 、核殼結構 |
外文關鍵詞: | PbS quantum dot, phase transfer, quantum dot-sensitized solar cells, Zinc oxide, core-shell structure |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以水相硫化鉛量子點製程,將硫化鈉滴入硝酸鉛與PVA高分子水溶液中生成硫化鉛量子點,以高分子PVA做為水相分散劑,於製程中調整硫化鈉進料速度與PVA濃度,控制量子點粒徑大小與分布,以TEM分析粒徑結果。研究結果硫化鈉以0.4ml/min 速度進料,於2wt% PVA水溶液中進行合成,可得粒徑4.57 nm,標準差1.2 nm大小量子點,且有80.8%(N%)以上量子點其導帶位置高於陽極基板(TiO2)導帶位置,利於電子傳遞至陽極。
由於水相合成硫化鉛量子點表面被PVA包覆,不利於電子傳輸,另一方面,水溶液表面張力較高,量子點不易滲入陽極材料孔隙中,因此本研究以轉相技術將水相硫化鉛量子點轉至油相,分散於正己烷中,並於轉相過程將PVA去除,研究結果以FTIR觀察量子點改質情形,以吸收光譜分析其莫耳吸光係數之變化。從FTIR中官能基訊號的消長,確定表面PVA被去除,以油酸根取代,量子點轉至油相後波長1155nm處莫耳吸光係數是水相的2.2倍,此外將吸光係數與波長積分,轉相後積分值是水相的1.7倍(波長範圍800-1300nm)。於轉相過程中添加正戊醇,研究對轉相效率之影響,轉相率以AA分析,經最佳化後達到90.6%轉相率。將轉相後硫化鉛量子點應用於量子點敏化太陽能電池達0.26%效率。
研究的另一焦點為氧化鋅包覆銀絲(Ag@ZnO)所構成的一維核殼結構(one dimensional core-shell structure),以PVP吸附於銀絲表面和鋅離子形成錯合物,經水熱後在表面形成10nm厚氧化鋅殼層,銀絲能作為電子通道使得電子快速傳遞至外電路中。研究討論水熱過程中不同比例之鋅離子和銀絲濃度對表面型態的影響,結果以TEM、SEM和XRD分析,觀察表面型態與分析材料結構,發現氧化鋅進行layer-plus-island成長。
We synthesized the lead sulfide quantum dot by a simple method and by controlling the content of dispersant (2wt%); PVA (polyvinyl alcohol) and the feeding rate of the precursor (0.4ml/min) we could control the exact size quantum dot. Lead sulfide quantum dot was characterized by transmission electron microscopy (TEM), X-ray electron diffraction (XRD) and Ultra violet-visible-near infrared spectroscopy (UV-Vis-NIR). Results show that lead sulfide quantum dot with an average diameter 4.57 nm and the narrow size distributions was obtained. Its standard deviation is 1.2nm. Furthermore, there are above 80.8% (N %) QDs have the higher conduction band than anode material (TiO2). Because aqueous phase QDs have the higher surface tension than organic phase, the QDs is hard to diffusion into the porous of TiO2. Besides, the aqueous phase dispersant (PVA) absorption on the surface of QDs would inhibit the electron transport. Therefore, we desire a phase transfer approach to solve these problems. We prepare the stable dispersion of lead sulfide (PbS) quantum dot in organic solvent by phase transfer. From the FTIR and absorption spectrum, after phase transfer the –OH group signal from the PVA is decrease and the molar absorptivity become 2.2 times. We study the content of the pentanol that affects the phase transfer efficiency, and after optimizing pentanol content the phase transfer efficiency is 90.6%. Afterward we apply the QDs in the quantum dot-sensitized solar cells the efficiency is 0.26%.
On the other hand, we synthesized one dimensional core-shell structure, zinc oxide was coated on the silver nanowire, where the diameter of Ag nanowire was 100 nm and the thickness of zinc oxide coating was 10nm. The polymer PVP (Polyvinylpyrrolidone) assisted the ionic zinc species absorption on surface of Ag. The Ag nanowire provided the high speed channel for electron passing through the anode to arrive to the external circuit. We change the ratio between the Zn2+ and Ag nanowire in the hydrothermal reaction. Observed the morphology of core-shell structure and found the layer-plus-island group.
Abel, K. A.; Shan, J.; Boyer, J.-C.; Harris, F.; van Veggel, F. C. J. M., "Highly Photoluminescent PbS Nanocrystals: The Beneficial Effect of Trioctylphosphine". Chem Mater 20, 3794-3796(2008)
Altria, K. D., "Background theory and applications of microemulsion electrokinetic chromatography". J Chromatogr A 892, 171-186(2000)
Asunskis, D. J.; Hanley, L., "Valence band and core level X-ray photoelectron spectroscopy of lead sulfide nanoparticle-polymer composites". Surf Sci 601, 4648-4656(2007)
Baik, S. J.; Kim, K.; Lim, K. S.; Jung, S.; Park, Y. C.; Han, D. G.; Lim, S.; Yoo, S.; Jeong, S., "Low-Temperature Annealing for Highly Conductive Lead Chalcogenide Quantum Dot Solids". J Phys Chem C 115, 607-612(2011)
Beard, M. C.; Gao, J. B.; Luther, J. M.; Semonin, O. E.; Ellingson, R. J.; Nozik, A. J., "Quantum Dot Size Dependent J-V Characteristics in Heterojunction ZnO/PbS Quantum Dot Solar Cells". Nano Lett 11, 1002-1008(2011)
Bhattacharya, A.; Ray, P., "Studies on surface tension of poly(vinyl alcohol): Effect of concentration, temperature, and addition of chaotropic agents". J Appl Polym Sci 93, 122-130(2004)
Braga, A.; Gimenez, S.; Concina, I.; Vomiero, A.; Mora-Sero, I., "Panchromatic Sensitized Solar Cells Based on Metal Sulfide Quantum Dots Grown Directly on Nanostructured TiO2 Electrodes". J Phys Chem Lett 2, 454-460(2011)
Carrott, P. J. M.; Carrott, M. M. L. R.; Nabais, J. M. V.; Ramalho, J. P. P., "Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons". Carbon 35, 403-410(1997)
Chen, S.; Liu, W. M., "Oleic acid capped PbS nanoparticles: Synthesis, characterization and tribological properties". Mater Chem Phys 98, 183-189(2006)
Fan, F.-R.; Ding, Y.; Liu, D.-Y.; Tian, Z.-Q.; Wang, Z. L., "Facet-Selective Epitaxial Growth of Heterogeneous Nanostructures of Semiconductor and Metal: ZnO Nanorods on Ag Nanocrystals". Journal of the American Chemical Society 131, 12036-12037(2009)
Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Eychmüller, A.; Weller, H., "Efficient Phase Transfer of Luminescent Thiol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents". Nano Lett 2, 803-806(2002)
Gimenez, S.; Lana-Villarreal, T.; Gomez, R.; Agouram, S.; Munoz-Sanjose, V.; Mora-Sero, I., "Determination of limiting factors of photovoltaic efficiency in quantum dot sensitized solar cells: Correlation between cell performance and structural properties". J Appl Phys 108, 064310(2010)
Gopal Ram, S.; Anbu Kulandainathan, M.; Ravi, G., "On the study of pH effects in the microwave enhanced rapid synthesis of nano-ZnO". Applied Physics A: Materials Science & Processing 99, 197-203(2010)
Gratzel, M., "Photoelectrochemical cells". Nature 414, 338-344(2001)
Guchhait, A.; Rath, A. K.; Pal, A. J., "To make polymer: Quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles". Sol Energ Mat Sol C 95, 651-656(2011)
Guldi, D. M.; Marczak, R. M., R.; Werner, F.; Ahmad, R.; Lobaz, V.; Peukert, W., "Detailed Investigations of ZnO Photoelectrodes Preparation for Dye Sensitized Solar Cells". Langmuir 27, 3920-3929(2011)
Hines, M. A.; Scholes, G. D., "Colloidal PbS Nanocrystals with Size-Tunable Near-Infrared Emission: Observation of Post-Synthesis Self-Narrowing of the Particle Size Distribution". Adv Mater 15, 1844-1849(2003)
Hirai, H.; Aizawa, H., "Preparation of Stable Dispersions of Colloidal Gold in Hexanes by Phase Transfer". J Colloid Interf Sci 161, 471-474(1993)
Hirai, H.; Aizawa, H.; Shiozaki, H., "Preparation of Nonaqueous Dispersion of Colloidal Silver by Phase-Transfer". Chem Lett, 1527-1530(1992)
Hyun, B. R.; Bartnik, A. C.; Sun, L. F.; Hanrath, T.; Wise, F. W., "Control of Electron Transfer from Lead-Salt Nanocrystals to TiO2". Nano Lett 11, 2126-2132(2011)
Hyun, B.-R.; Zhong, Y.-W.; Bartnik, A. C.; Sun, L.; Abruña, H. D.; Wise, F. W.; Goodreau, J. D.; Matthews, J. R.; Leslie, T. M.; Borrelli, N. F., "Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles". Acs Nano 2, 2206-2212(2008)
King, L. A.; Riley, D. J., "Importance of QD Purification Procedure on Surface Adsorbance of QDs and Performance of QD Sensitized Photoanodes". J Phys Chem C 116, 3349-3355(2012)
Kuljanin, J.; Comor, M. I.; Djokovic, V.; Nedeljkovic, J. M., "Synthesis and characterization of nanocomposite of polyvinyl alcohol and lead sulfide nanoparticles". Mater Chem Phys 95, 67-71(2006)
Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D., "Nanowire dye-sensitized solar cells". Nat Mater 4, 455-459(2005)
Lawrence, M. J.; Rees, G. D., "Microemulsion-based media as novel drug delivery systems". Adv Drug Deliver Rev 45, 89-121(2000)
Lee, H.; Leventis, H. C.; Moon, S.-J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K., "PbS and CdS Quantum Dot-Sensitized Solid-State Solar Cells: “Old Concepts, New Results”". Adv Funct Mater 19, 2735-2742(2009)
Lee, H.; Wang, M. K.; Chen, P.; Gamelin, D. R.; Zakeeruddin, S. M.; Gratzel, M.; Nazeeruddin, M. K., "Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process". Nano Lett 9, 4221-4227(2009)
Lee, H. J.; Bang, J.; Park, J.; Kim, S.; Park, S. M., "Multilayered Semiconductor (CdS/CdSe/ZnS)-Sensitized TiO(2) Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes". Chem Mater 22, 5636-5643(2010)
Lee, H. J.; Yum, J.-H.; Leventis, H. C.; Zakeeruddin, S. M.; Haque, S. A.; Chen, P.; Seok, S. I.; Grätzel, M.; Nazeeruddin, M. K., "CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity". The Journal of Physical Chemistry C 112, 11600-11608(2008)
Lee, Y. L.; Chang, C. H., "Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells". J Power Sources 185, 584-588(2008)
Lee, Y. L.; Lo, Y. S., "Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe". Adv Funct Mater 19, 604-609(2009)
Leventis, H. C.; O'Mahony, F.; Akhtar, J.; Afzaal, M.; O'Brien, P.; Haque, S. A., "Transient Optical Studies of Interfacial Charge Transfer at Nanostructured Metal Oxide/PbS Quantum Dot/Organic Hole Conductor Heterojunctions". Journal of the American Chemical Society 132, 2743-2750(2010)
Lin, W.; Fritz, K.; Guerin, G.; Bardajee, G. R.; Hinds, S.; Sukhovatkin, V.; Sargent, E. H.; Scholes, G. D.; Winnik, M. A., "Highly Luminescent Lead Sulfide Nanocrystals in Organic Solvents and Water through Ligand Exchange with Poly(acrylic acid)". Langmuir 24, 8215-8219(2008)
Lin, X. M.; Sorensen, C. M.; Klabunde, K. J., "Digestive Ripening, Nanophase Segregation and Superlattice Formation in Gold Nanocrystal Colloids". J Nanopart Res 2, 157-164(2000)
Liu, J. C.; Ruffini, N.; Pollot, P.; Llopis-Mestre, V.; Dilek, C.; Eckert, C. A.; Liotta, C. L.; Roberts, C. B., "More Benign Synthesis of Palladium Nanoparticles in Dimethyl Sulfoxide and Their Extraction into an Organic Phase". Ind Eng Chem Res 49, 8174-8179(2010)
Luther, J. M.; Gao, J. B.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J., "Stability Assessment on a 3% Bilayer PbS/ZnO Quantum Dot Heterojunction Solar Cell". Adv Mater 22, 3704-3707(2010)
Nenadovic, M. T.; Comor, M. I.; Vasic, V.; Micic, O. I., "Transient bleaching of small lead sulfide colloids: influence of surface properties". The Journal of Physical Chemistry 94, 6390-6396(1990)
Nozik, A. J., "Exciton Multiplication and Relaxation Dynamics in Quantum Dots: Applications to Ultrahigh-Efficiency Solar Photon Conversion†". Inorg Chem 44, 6893-6899(2005)
Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Grätzel, M.; Sargent, E. H., "Depleted-Heterojunction Colloidal Quantum Dot Solar Cells". Acs Nano 4, 3374-3380(2010)
Pendyala, N. B.; Koteswara Rao, K. S. R., "Efficient Hg and Ag ion detection with luminescent PbS quantum dots grown in poly vinyl alcohol and capped with mercaptoethanol". Colloids and Surfaces A: Physicochemical and Engineering Aspects 339, 43-47(2009)
Podlogar, F.; Rogac, M. B.; Gagperlin, M., "The effect of internal structure of selected water-Tween 40 (R)-Imwitor 308 (R)-IPM microemulsions on ketoprofene release". Int J Pharm 302, 68-77(2005)
Popov, A. P.; Priezzhev, A. V.; Lademann, J.; Myllyla, R., "TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens". J Phys D Appl Phys 38, 2564-2570(2005)
Rees, G. D.; Robinson, B. H., "Microemulsions and organogels: Properties and novel applications". Adv Mater 5, 608-619(1993)
Ruhle, S.; Shalom, M.; Zaban, A., "Quantum-Dot-Sensitized Solar Cells". Chemphyschem 11, 2290-2304(2010)
Sargent, E. H.; Klem, E. J. D.; Shukla, H.; Hinds, S.; MacNeil, D. D.; Levina, L., "Impact of dithiol treatment and air annealing on the conductivity, mobility, and hole density in PbS colloidal quantum dot solids". Appl Phys Lett 92, 212105(2008)
Seol, M.; Kim, H.; Tak, Y.; Yong, K., "Novel nanowire array based highly efficient quantum dot sensitized solar cell". Chemical Communications 46, 5521-5523(2010)
Tamang, S.; Beaune, G.; Poillot, C.; De Waard, M.; Texier-Nogues, I.; Reiss, P., "Compact and highly stable quantum dots through optimized aqueous phase transfer". Colloidal Quantum Dots/Nanocrystals for Biomedical Applications Vi 7909, 79091B(2011)
Tefashe, U. M.; Nonomura, K.; Vlachopoulos, N.; Hagfeldt, A.; Wittstock, G., "Effect of Cation on Dye Regeneration Kinetics of N719-Sensitized TiO2 Films in Acetonitrile-Based and Ionic-Liquid-Based Electrolytes Investigated by Scanning Electrochemical Microscopy". J Phys Chem C 116, 4316-4323(2012)
Vandamme, T. F., "Microemulsions as ocular drug delivery systems: recent developments and future challenges". Prog Retin Eye Res 21, 15-34(2002)
Wadia, C.; Alivisatos, A. P.; Kammen, D. M., "Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment". Environ Sci Technol 43, 2072-2077(2009)
Wang, C. L.; Shen, E. H.; Wang, E. B.; Gao, L.; Kang, Z. K.; Tian, C. G.; Lan, Y.; Zhang, C., "Controllable synthesis of ZnO nanocrystals via a surfactant-assisted alcohol thermal process at a low temperature". Mater Lett 59, 2867-2871(2005)
Wong, D. K.-P.; Ku, C.-H.; Chen, Y.-R.; Chen, G.-R.; Wu, J.-J., "Enhancing Electron Collection Efficiency and Effective Diffusion Length in Dye-Sensitized Solar Cells". Chemphyschem 10, 2698-2702(2009)
Wu, S. X.; Zeng, H. X.; Schelly, Z. A., "Preparation of ultrasmall, uncapped PbS quantum dots via electroporation of vesicles". Langmuir 21, 686-691(2005)
Yahya, G. O.; Ali, S. K. A.; Hamad, E. Z., "Surface and interfacial activities of hydrophobically modified poly(vinyl alcohol) (PVA)". Polymer 37, 1183-1188(1996)
Yang, Z.; Chen, C.-Y.; Roy, P.; Chang, H.-T., "Quantum dot-sensitized solar cells incorporating nanomaterials". Chemical Communications 47, 9561-9571(2011)
Yu, W. W.; Peng, X., "Formation of High-Quality CdS and Other II–VI Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers". Angewandte Chemie International Edition 41, 2368-2371(2002)
Zaban, A.; Tachan, Z.; Shalom, M.; Hod, I.; Ruhle, S.; Tirosh, S., "PbS as a Highly Catalytic Counter Electrode for Polysulfide-Based Quantum Dot Solar Cells". J Phys Chem C 115, 6162-6166(2011)
Zhang, J. H.; Liu, H. Y.; Wang, Z. L.; Ming, N. B., "Low-temperature growth of ZnO with controllable shapes and band gaps". J Cryst Growth 310, 2848-2853(2008)
Zhao, P.; Zhang, H.; Zhou, H.; Yi, B., "Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes". Electrochim Acta 51, 1091-1098(2005)
Zheng, Y.; Zheng, L.; Zhan, Y.; Lin, X.; Zheng, Q.; Wei, K., "Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis". Inorg Chem 46, 6980-6986(2007)
Zylstra, J.; Amey, J.; Miska, N. J.; Pang, L. S.; Hine, C. R.; Langer, J.; Doyle, R. P.; Maye, M. M., "A Modular Phase Transfer and Ligand Exchange Protocol for Quantum Dots". Langmuir 27, 4371-4379(2011)
盧育杰,「溶液相法合成奈米銀及半導體量子點之研究與應用」,國立清華大學化學工程學系博士論文(2010)
張雅欣,「奈米級銀粒子與銀絲於量子點及透明導電塗層之應用研究」,國立清華大學化學工程學系碩士論文(2011)
Polymer data handbook,Copyright © 1999 by Oxford University Press, Inc.
蔡信行主著,聚合物化學,289-294頁,新文京開發出版股份有限公司,新北市中和區中山路二段362號9樓
杜逸虹著,聚合體學,30-34頁,三民書局股份有限公司,台北市復興北路386號